Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  voliunlem2 Structured version   Visualization version   GIF version

Theorem voliunlem2 23226
 Description: Lemma for voliun 23229. (Contributed by Mario Carneiro, 20-Mar-2014.)
Hypotheses
Ref Expression
voliunlem.3 (𝜑𝐹:ℕ⟶dom vol)
voliunlem.5 (𝜑Disj 𝑖 ∈ ℕ (𝐹𝑖))
voliunlem.6 𝐻 = (𝑛 ∈ ℕ ↦ (vol*‘(𝑥 ∩ (𝐹𝑛))))
Assertion
Ref Expression
voliunlem2 (𝜑 ran 𝐹 ∈ dom vol)
Distinct variable groups:   𝑖,𝑛,𝑥,𝐹   𝜑,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑖)   𝐻(𝑥,𝑖,𝑛)

Proof of Theorem voliunlem2
Dummy variables 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 voliunlem.3 . . . . 5 (𝜑𝐹:ℕ⟶dom vol)
2 frn 6010 . . . . 5 (𝐹:ℕ⟶dom vol → ran 𝐹 ⊆ dom vol)
31, 2syl 17 . . . 4 (𝜑 → ran 𝐹 ⊆ dom vol)
4 mblss 23206 . . . . . 6 (𝑥 ∈ dom vol → 𝑥 ⊆ ℝ)
5 selpw 4137 . . . . . 6 (𝑥 ∈ 𝒫 ℝ ↔ 𝑥 ⊆ ℝ)
64, 5sylibr 224 . . . . 5 (𝑥 ∈ dom vol → 𝑥 ∈ 𝒫 ℝ)
76ssriv 3587 . . . 4 dom vol ⊆ 𝒫 ℝ
83, 7syl6ss 3595 . . 3 (𝜑 → ran 𝐹 ⊆ 𝒫 ℝ)
9 sspwuni 4577 . . 3 (ran 𝐹 ⊆ 𝒫 ℝ ↔ ran 𝐹 ⊆ ℝ)
108, 9sylib 208 . 2 (𝜑 ran 𝐹 ⊆ ℝ)
11 elpwi 4140 . . . 4 (𝑥 ∈ 𝒫 ℝ → 𝑥 ⊆ ℝ)
12 inundif 4018 . . . . . . . 8 ((𝑥 ran 𝐹) ∪ (𝑥 ran 𝐹)) = 𝑥
1312fveq2i 6151 . . . . . . 7 (vol*‘((𝑥 ran 𝐹) ∪ (𝑥 ran 𝐹))) = (vol*‘𝑥)
14 inss1 3811 . . . . . . . . 9 (𝑥 ran 𝐹) ⊆ 𝑥
15 simp2 1060 . . . . . . . . 9 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → 𝑥 ⊆ ℝ)
1614, 15syl5ss 3594 . . . . . . . 8 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (𝑥 ran 𝐹) ⊆ ℝ)
17 ovolsscl 23161 . . . . . . . . . 10 (((𝑥 ran 𝐹) ⊆ 𝑥𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ran 𝐹)) ∈ ℝ)
1814, 17mp3an1 1408 . . . . . . . . 9 ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ran 𝐹)) ∈ ℝ)
19183adant1 1077 . . . . . . . 8 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ran 𝐹)) ∈ ℝ)
20 difss 3715 . . . . . . . . 9 (𝑥 ran 𝐹) ⊆ 𝑥
2120, 15syl5ss 3594 . . . . . . . 8 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (𝑥 ran 𝐹) ⊆ ℝ)
22 ovolsscl 23161 . . . . . . . . . 10 (((𝑥 ran 𝐹) ⊆ 𝑥𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ran 𝐹)) ∈ ℝ)
2320, 22mp3an1 1408 . . . . . . . . 9 ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ran 𝐹)) ∈ ℝ)
24233adant1 1077 . . . . . . . 8 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ran 𝐹)) ∈ ℝ)
25 ovolun 23174 . . . . . . . 8 ((((𝑥 ran 𝐹) ⊆ ℝ ∧ (vol*‘(𝑥 ran 𝐹)) ∈ ℝ) ∧ ((𝑥 ran 𝐹) ⊆ ℝ ∧ (vol*‘(𝑥 ran 𝐹)) ∈ ℝ)) → (vol*‘((𝑥 ran 𝐹) ∪ (𝑥 ran 𝐹))) ≤ ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))))
2616, 19, 21, 24, 25syl22anc 1324 . . . . . . 7 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘((𝑥 ran 𝐹) ∪ (𝑥 ran 𝐹))) ≤ ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))))
2713, 26syl5eqbrr 4649 . . . . . 6 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) ≤ ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))))
2819rexrd 10033 . . . . . . . 8 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ran 𝐹)) ∈ ℝ*)
29 nnuz 11667 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
30 1zzd 11352 . . . . . . . . . . . 12 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → 1 ∈ ℤ)
31 fveq2 6148 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
3231ineq2d 3792 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘 → (𝑥 ∩ (𝐹𝑛)) = (𝑥 ∩ (𝐹𝑘)))
3332fveq2d 6152 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → (vol*‘(𝑥 ∩ (𝐹𝑛))) = (vol*‘(𝑥 ∩ (𝐹𝑘))))
34 voliunlem.6 . . . . . . . . . . . . . . 15 𝐻 = (𝑛 ∈ ℕ ↦ (vol*‘(𝑥 ∩ (𝐹𝑛))))
35 fvex 6158 . . . . . . . . . . . . . . 15 (vol*‘(𝑥 ∩ (𝐹𝑘))) ∈ V
3633, 34, 35fvmpt 6239 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝐻𝑘) = (vol*‘(𝑥 ∩ (𝐹𝑘))))
3736adantl 482 . . . . . . . . . . . . 13 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (𝐻𝑘) = (vol*‘(𝑥 ∩ (𝐹𝑘))))
38 inss1 3811 . . . . . . . . . . . . . . . 16 (𝑥 ∩ (𝐹𝑘)) ⊆ 𝑥
39 ovolsscl 23161 . . . . . . . . . . . . . . . 16 (((𝑥 ∩ (𝐹𝑘)) ⊆ 𝑥𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∩ (𝐹𝑘))) ∈ ℝ)
4038, 39mp3an1 1408 . . . . . . . . . . . . . . 15 ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∩ (𝐹𝑘))) ∈ ℝ)
41403adant1 1077 . . . . . . . . . . . . . 14 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∩ (𝐹𝑘))) ∈ ℝ)
4241adantr 481 . . . . . . . . . . . . 13 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (vol*‘(𝑥 ∩ (𝐹𝑘))) ∈ ℝ)
4337, 42eqeltrd 2698 . . . . . . . . . . . 12 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (𝐻𝑘) ∈ ℝ)
4429, 30, 43serfre 12770 . . . . . . . . . . 11 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → seq1( + , 𝐻):ℕ⟶ℝ)
45 frn 6010 . . . . . . . . . . 11 (seq1( + , 𝐻):ℕ⟶ℝ → ran seq1( + , 𝐻) ⊆ ℝ)
4644, 45syl 17 . . . . . . . . . 10 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ran seq1( + , 𝐻) ⊆ ℝ)
47 ressxr 10027 . . . . . . . . . 10 ℝ ⊆ ℝ*
4846, 47syl6ss 3595 . . . . . . . . 9 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ran seq1( + , 𝐻) ⊆ ℝ*)
49 supxrcl 12088 . . . . . . . . 9 (ran seq1( + , 𝐻) ⊆ ℝ* → sup(ran seq1( + , 𝐻), ℝ*, < ) ∈ ℝ*)
5048, 49syl 17 . . . . . . . 8 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → sup(ran seq1( + , 𝐻), ℝ*, < ) ∈ ℝ*)
51 simp3 1061 . . . . . . . . . 10 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) ∈ ℝ)
5251, 24resubcld 10402 . . . . . . . . 9 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))) ∈ ℝ)
5352rexrd 10033 . . . . . . . 8 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))) ∈ ℝ*)
54 iunin2 4550 . . . . . . . . . . 11 𝑛 ∈ ℕ (𝑥 ∩ (𝐹𝑛)) = (𝑥 𝑛 ∈ ℕ (𝐹𝑛))
55 ffn 6002 . . . . . . . . . . . . . 14 (𝐹:ℕ⟶dom vol → 𝐹 Fn ℕ)
56 fniunfv 6459 . . . . . . . . . . . . . 14 (𝐹 Fn ℕ → 𝑛 ∈ ℕ (𝐹𝑛) = ran 𝐹)
571, 55, 563syl 18 . . . . . . . . . . . . 13 (𝜑 𝑛 ∈ ℕ (𝐹𝑛) = ran 𝐹)
58573ad2ant1 1080 . . . . . . . . . . . 12 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → 𝑛 ∈ ℕ (𝐹𝑛) = ran 𝐹)
5958ineq2d 3792 . . . . . . . . . . 11 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (𝑥 𝑛 ∈ ℕ (𝐹𝑛)) = (𝑥 ran 𝐹))
6054, 59syl5eq 2667 . . . . . . . . . 10 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → 𝑛 ∈ ℕ (𝑥 ∩ (𝐹𝑛)) = (𝑥 ran 𝐹))
6160fveq2d 6152 . . . . . . . . 9 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘ 𝑛 ∈ ℕ (𝑥 ∩ (𝐹𝑛))) = (vol*‘(𝑥 ran 𝐹)))
62 eqid 2621 . . . . . . . . . 10 seq1( + , 𝐻) = seq1( + , 𝐻)
63 inss1 3811 . . . . . . . . . . . 12 (𝑥 ∩ (𝐹𝑛)) ⊆ 𝑥
6463, 15syl5ss 3594 . . . . . . . . . . 11 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (𝑥 ∩ (𝐹𝑛)) ⊆ ℝ)
6564adantr 481 . . . . . . . . . 10 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (𝑥 ∩ (𝐹𝑛)) ⊆ ℝ)
66 ovolsscl 23161 . . . . . . . . . . . . 13 (((𝑥 ∩ (𝐹𝑛)) ⊆ 𝑥𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∩ (𝐹𝑛))) ∈ ℝ)
6763, 66mp3an1 1408 . . . . . . . . . . . 12 ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∩ (𝐹𝑛))) ∈ ℝ)
68673adant1 1077 . . . . . . . . . . 11 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∩ (𝐹𝑛))) ∈ ℝ)
6968adantr 481 . . . . . . . . . 10 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (vol*‘(𝑥 ∩ (𝐹𝑛))) ∈ ℝ)
7062, 34, 65, 69ovoliun 23180 . . . . . . . . 9 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘ 𝑛 ∈ ℕ (𝑥 ∩ (𝐹𝑛))) ≤ sup(ran seq1( + , 𝐻), ℝ*, < ))
7161, 70eqbrtrrd 4637 . . . . . . . 8 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ran 𝐹)) ≤ sup(ran seq1( + , 𝐻), ℝ*, < ))
7213ad2ant1 1080 . . . . . . . . . . . . 13 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → 𝐹:ℕ⟶dom vol)
73 voliunlem.5 . . . . . . . . . . . . . 14 (𝜑Disj 𝑖 ∈ ℕ (𝐹𝑖))
74733ad2ant1 1080 . . . . . . . . . . . . 13 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → Disj 𝑖 ∈ ℕ (𝐹𝑖))
7572, 74, 34, 15, 51voliunlem1 23225 . . . . . . . . . . . 12 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑘 ∈ ℕ) → ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥))
7644ffvelrnda 6315 . . . . . . . . . . . . 13 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (seq1( + , 𝐻)‘𝑘) ∈ ℝ)
7724adantr 481 . . . . . . . . . . . . 13 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (vol*‘(𝑥 ran 𝐹)) ∈ ℝ)
78 simpl3 1064 . . . . . . . . . . . . 13 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (vol*‘𝑥) ∈ ℝ)
79 leaddsub 10448 . . . . . . . . . . . . 13 (((seq1( + , 𝐻)‘𝑘) ∈ ℝ ∧ (vol*‘(𝑥 ran 𝐹)) ∈ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥) ↔ (seq1( + , 𝐻)‘𝑘) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹)))))
8076, 77, 78, 79syl3anc 1323 . . . . . . . . . . . 12 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥) ↔ (seq1( + , 𝐻)‘𝑘) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹)))))
8175, 80mpbid 222 . . . . . . . . . . 11 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (seq1( + , 𝐻)‘𝑘) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))))
8281ralrimiva 2960 . . . . . . . . . 10 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ∀𝑘 ∈ ℕ (seq1( + , 𝐻)‘𝑘) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))))
83 ffn 6002 . . . . . . . . . . 11 (seq1( + , 𝐻):ℕ⟶ℝ → seq1( + , 𝐻) Fn ℕ)
84 breq1 4616 . . . . . . . . . . . 12 (𝑧 = (seq1( + , 𝐻)‘𝑘) → (𝑧 ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))) ↔ (seq1( + , 𝐻)‘𝑘) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹)))))
8584ralrn 6318 . . . . . . . . . . 11 (seq1( + , 𝐻) Fn ℕ → (∀𝑧 ∈ ran seq1( + , 𝐻)𝑧 ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))) ↔ ∀𝑘 ∈ ℕ (seq1( + , 𝐻)‘𝑘) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹)))))
8644, 83, 853syl 18 . . . . . . . . . 10 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (∀𝑧 ∈ ran seq1( + , 𝐻)𝑧 ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))) ↔ ∀𝑘 ∈ ℕ (seq1( + , 𝐻)‘𝑘) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹)))))
8782, 86mpbird 247 . . . . . . . . 9 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ∀𝑧 ∈ ran seq1( + , 𝐻)𝑧 ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))))
88 supxrleub 12099 . . . . . . . . . 10 ((ran seq1( + , 𝐻) ⊆ ℝ* ∧ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))) ∈ ℝ*) → (sup(ran seq1( + , 𝐻), ℝ*, < ) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))) ↔ ∀𝑧 ∈ ran seq1( + , 𝐻)𝑧 ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹)))))
8948, 53, 88syl2anc 692 . . . . . . . . 9 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (sup(ran seq1( + , 𝐻), ℝ*, < ) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))) ↔ ∀𝑧 ∈ ran seq1( + , 𝐻)𝑧 ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹)))))
9087, 89mpbird 247 . . . . . . . 8 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → sup(ran seq1( + , 𝐻), ℝ*, < ) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))))
9128, 50, 53, 71, 90xrletrd 11937 . . . . . . 7 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ran 𝐹)) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹))))
92 leaddsub 10448 . . . . . . . 8 (((vol*‘(𝑥 ran 𝐹)) ∈ ℝ ∧ (vol*‘(𝑥 ran 𝐹)) ∈ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥) ↔ (vol*‘(𝑥 ran 𝐹)) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹)))))
9319, 24, 51, 92syl3anc 1323 . . . . . . 7 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥) ↔ (vol*‘(𝑥 ran 𝐹)) ≤ ((vol*‘𝑥) − (vol*‘(𝑥 ran 𝐹)))))
9491, 93mpbird 247 . . . . . 6 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥))
9519, 24readdcld 10013 . . . . . . 7 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))) ∈ ℝ)
9651, 95letri3d 10123 . . . . . 6 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘𝑥) = ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))) ↔ ((vol*‘𝑥) ≤ ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))) ∧ ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥))))
9727, 94, 96mpbir2and 956 . . . . 5 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) = ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))))
98973expia 1264 . . . 4 ((𝜑𝑥 ⊆ ℝ) → ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹)))))
9911, 98sylan2 491 . . 3 ((𝜑𝑥 ∈ 𝒫 ℝ) → ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹)))))
10099ralrimiva 2960 . 2 (𝜑 → ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹)))))
101 ismbl 23201 . 2 ( ran 𝐹 ∈ dom vol ↔ ( ran 𝐹 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ran 𝐹)) + (vol*‘(𝑥 ran 𝐹))))))
10210, 100, 101sylanbrc 697 1 (𝜑 ran 𝐹 ∈ dom vol)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987  ∀wral 2907   ∖ cdif 3552   ∪ cun 3553   ∩ cin 3554   ⊆ wss 3555  𝒫 cpw 4130  ∪ cuni 4402  ∪ ciun 4485  Disj wdisj 4583   class class class wbr 4613   ↦ cmpt 4673  dom cdm 5074  ran crn 5075   Fn wfn 5842  ⟶wf 5843  ‘cfv 5847  (class class class)co 6604  supcsup 8290  ℝcr 9879  1c1 9881   + caddc 9883  ℝ*cxr 10017   < clt 10018   ≤ cle 10019   − cmin 10210  ℕcn 10964  seqcseq 12741  vol*covol 23138  volcvol 23139 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cc 9201  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-disj 4584  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-q 11733  df-rp 11777  df-ioo 12121  df-ico 12123  df-icc 12124  df-fz 12269  df-fzo 12407  df-fl 12533  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-rlim 14154  df-sum 14351  df-ovol 23140  df-vol 23141 This theorem is referenced by:  voliunlem3  23227  iunmbl  23228
 Copyright terms: Public domain W3C validator