Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  volmeas Structured version   Visualization version   GIF version

Theorem volmeas 30072
Description: The Lebesgue measure is a measure. (Contributed by Thierry Arnoux, 16-Oct-2017.)
Assertion
Ref Expression
volmeas vol ∈ (measures‘dom vol)

Proof of Theorem volmeas
Dummy variables 𝑓 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 volf 23204 . 2 vol:dom vol⟶(0[,]+∞)
2 fvssunirn 6174 . . . . . 6 (sigAlgebra‘ℝ) ⊆ ran sigAlgebra
3 dmvlsiga 29970 . . . . . 6 dom vol ∈ (sigAlgebra‘ℝ)
42, 3sselii 3580 . . . . 5 dom vol ∈ ran sigAlgebra
5 0elsiga 29955 . . . . 5 (dom vol ∈ ran sigAlgebra → ∅ ∈ dom vol)
64, 5ax-mp 5 . . . 4 ∅ ∈ dom vol
7 mblvol 23205 . . . 4 (∅ ∈ dom vol → (vol‘∅) = (vol*‘∅))
86, 7ax-mp 5 . . 3 (vol‘∅) = (vol*‘∅)
9 ovol0 23168 . . 3 (vol*‘∅) = 0
108, 9eqtri 2643 . 2 (vol‘∅) = 0
11 simpr 477 . . . . . 6 (((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑥 ∈ Fin) → 𝑥 ∈ Fin)
12 nfv 1840 . . . . . . . . 9 𝑦 𝑥 ∈ 𝒫 dom vol
13 nfv 1840 . . . . . . . . . 10 𝑦 𝑥 ≼ ω
14 nfdisj1 4596 . . . . . . . . . 10 𝑦Disj 𝑦𝑥 𝑦
1513, 14nfan 1825 . . . . . . . . 9 𝑦(𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)
1612, 15nfan 1825 . . . . . . . 8 𝑦(𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦))
17 nfv 1840 . . . . . . . 8 𝑦 𝑥 ∈ Fin
1816, 17nfan 1825 . . . . . . 7 𝑦((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑥 ∈ Fin)
19 elpwi 4140 . . . . . . . . . 10 (𝑥 ∈ 𝒫 dom vol → 𝑥 ⊆ dom vol)
2019ad3antrrr 765 . . . . . . . . 9 ((((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑥 ∈ Fin) ∧ 𝑦𝑥) → 𝑥 ⊆ dom vol)
21 simpr 477 . . . . . . . . 9 ((((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑥 ∈ Fin) ∧ 𝑦𝑥) → 𝑦𝑥)
2220, 21sseldd 3584 . . . . . . . 8 ((((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑥 ∈ Fin) ∧ 𝑦𝑥) → 𝑦 ∈ dom vol)
2322ex 450 . . . . . . 7 (((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑥 ∈ Fin) → (𝑦𝑥𝑦 ∈ dom vol))
2418, 23ralrimi 2951 . . . . . 6 (((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑥 ∈ Fin) → ∀𝑦𝑥 𝑦 ∈ dom vol)
25 simplrr 800 . . . . . 6 (((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑥 ∈ Fin) → Disj 𝑦𝑥 𝑦)
26 uniiun 4539 . . . . . . . 8 𝑥 = 𝑦𝑥 𝑦
2726fveq2i 6151 . . . . . . 7 (vol‘ 𝑥) = (vol‘ 𝑦𝑥 𝑦)
28 volfiniune 30071 . . . . . . 7 ((𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦 ∈ dom vol ∧ Disj 𝑦𝑥 𝑦) → (vol‘ 𝑦𝑥 𝑦) = Σ*𝑦𝑥(vol‘𝑦))
2927, 28syl5eq 2667 . . . . . 6 ((𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦 ∈ dom vol ∧ Disj 𝑦𝑥 𝑦) → (vol‘ 𝑥) = Σ*𝑦𝑥(vol‘𝑦))
3011, 24, 25, 29syl3anc 1323 . . . . 5 (((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑥 ∈ Fin) → (vol‘ 𝑥) = Σ*𝑦𝑥(vol‘𝑦))
31 bren 7908 . . . . . 6 (ℕ ≈ 𝑥 ↔ ∃𝑓 𝑓:ℕ–1-1-onto𝑥)
32 nfv 1840 . . . . . . . . . . . 12 𝑛(𝑥 ∈ 𝒫 dom vol ∧ 𝑓:ℕ–1-1-onto𝑥)
33 nfcv 2761 . . . . . . . . . . . 12 𝑛(vol‘𝑦)
34 nfcv 2761 . . . . . . . . . . . 12 𝑦(vol‘(𝑓𝑛))
35 nfcv 2761 . . . . . . . . . . . 12 𝑛𝑥
36 nfcv 2761 . . . . . . . . . . . 12 𝑛
37 nfcv 2761 . . . . . . . . . . . 12 𝑛𝑓
38 fveq2 6148 . . . . . . . . . . . 12 (𝑦 = (𝑓𝑛) → (vol‘𝑦) = (vol‘(𝑓𝑛)))
39 simpl 473 . . . . . . . . . . . 12 ((𝑥 ∈ 𝒫 dom vol ∧ 𝑓:ℕ–1-1-onto𝑥) → 𝑥 ∈ 𝒫 dom vol)
40 simpr 477 . . . . . . . . . . . 12 ((𝑥 ∈ 𝒫 dom vol ∧ 𝑓:ℕ–1-1-onto𝑥) → 𝑓:ℕ–1-1-onto𝑥)
41 eqidd 2622 . . . . . . . . . . . 12 (((𝑥 ∈ 𝒫 dom vol ∧ 𝑓:ℕ–1-1-onto𝑥) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛) = (𝑓𝑛))
421a1i 11 . . . . . . . . . . . . 13 (((𝑥 ∈ 𝒫 dom vol ∧ 𝑓:ℕ–1-1-onto𝑥) ∧ 𝑦𝑥) → vol:dom vol⟶(0[,]+∞))
4339, 19syl 17 . . . . . . . . . . . . . 14 ((𝑥 ∈ 𝒫 dom vol ∧ 𝑓:ℕ–1-1-onto𝑥) → 𝑥 ⊆ dom vol)
4443sselda 3583 . . . . . . . . . . . . 13 (((𝑥 ∈ 𝒫 dom vol ∧ 𝑓:ℕ–1-1-onto𝑥) ∧ 𝑦𝑥) → 𝑦 ∈ dom vol)
4542, 44ffvelrnd 6316 . . . . . . . . . . . 12 (((𝑥 ∈ 𝒫 dom vol ∧ 𝑓:ℕ–1-1-onto𝑥) ∧ 𝑦𝑥) → (vol‘𝑦) ∈ (0[,]+∞))
4632, 33, 34, 35, 36, 37, 38, 39, 40, 41, 45esumf1o 29890 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 dom vol ∧ 𝑓:ℕ–1-1-onto𝑥) → Σ*𝑦𝑥(vol‘𝑦) = Σ*𝑛 ∈ ℕ(vol‘(𝑓𝑛)))
4746adantlr 750 . . . . . . . . . 10 (((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑓:ℕ–1-1-onto𝑥) → Σ*𝑦𝑥(vol‘𝑦) = Σ*𝑛 ∈ ℕ(vol‘(𝑓𝑛)))
4819ad3antrrr 765 . . . . . . . . . . . . 13 ((((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑓:ℕ–1-1-onto𝑥) ∧ 𝑛 ∈ ℕ) → 𝑥 ⊆ dom vol)
49 f1of 6094 . . . . . . . . . . . . . . 15 (𝑓:ℕ–1-1-onto𝑥𝑓:ℕ⟶𝑥)
5049adantl 482 . . . . . . . . . . . . . 14 (((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑓:ℕ–1-1-onto𝑥) → 𝑓:ℕ⟶𝑥)
5150ffvelrnda 6315 . . . . . . . . . . . . 13 ((((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑓:ℕ–1-1-onto𝑥) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛) ∈ 𝑥)
5248, 51sseldd 3584 . . . . . . . . . . . 12 ((((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑓:ℕ–1-1-onto𝑥) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛) ∈ dom vol)
5352ralrimiva 2960 . . . . . . . . . . 11 (((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑓:ℕ–1-1-onto𝑥) → ∀𝑛 ∈ ℕ (𝑓𝑛) ∈ dom vol)
54 simpr 477 . . . . . . . . . . . 12 (((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑓:ℕ–1-1-onto𝑥) → 𝑓:ℕ–1-1-onto𝑥)
55 simplrr 800 . . . . . . . . . . . 12 (((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑓:ℕ–1-1-onto𝑥) → Disj 𝑦𝑥 𝑦)
56 id 22 . . . . . . . . . . . . . 14 (𝑓:ℕ–1-1-onto𝑥𝑓:ℕ–1-1-onto𝑥)
57 simpr 477 . . . . . . . . . . . . . 14 ((𝑓:ℕ–1-1-onto𝑥𝑦 = (𝑓𝑛)) → 𝑦 = (𝑓𝑛))
5856, 57disjrdx 29246 . . . . . . . . . . . . 13 (𝑓:ℕ–1-1-onto𝑥 → (Disj 𝑛 ∈ ℕ (𝑓𝑛) ↔ Disj 𝑦𝑥 𝑦))
5958biimpar 502 . . . . . . . . . . . 12 ((𝑓:ℕ–1-1-onto𝑥Disj 𝑦𝑥 𝑦) → Disj 𝑛 ∈ ℕ (𝑓𝑛))
6054, 55, 59syl2anc 692 . . . . . . . . . . 11 (((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑓:ℕ–1-1-onto𝑥) → Disj 𝑛 ∈ ℕ (𝑓𝑛))
61 voliune 30070 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ (𝑓𝑛) ∈ dom vol ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛)) → (vol‘ 𝑛 ∈ ℕ (𝑓𝑛)) = Σ*𝑛 ∈ ℕ(vol‘(𝑓𝑛)))
6253, 60, 61syl2anc 692 . . . . . . . . . 10 (((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑓:ℕ–1-1-onto𝑥) → (vol‘ 𝑛 ∈ ℕ (𝑓𝑛)) = Σ*𝑛 ∈ ℕ(vol‘(𝑓𝑛)))
63 f1ofo 6101 . . . . . . . . . . . . . 14 (𝑓:ℕ–1-1-onto𝑥𝑓:ℕ–onto𝑥)
6463, 57iunrdx 29224 . . . . . . . . . . . . 13 (𝑓:ℕ–1-1-onto𝑥 𝑛 ∈ ℕ (𝑓𝑛) = 𝑦𝑥 𝑦)
6564, 26syl6eqr 2673 . . . . . . . . . . . 12 (𝑓:ℕ–1-1-onto𝑥 𝑛 ∈ ℕ (𝑓𝑛) = 𝑥)
6665fveq2d 6152 . . . . . . . . . . 11 (𝑓:ℕ–1-1-onto𝑥 → (vol‘ 𝑛 ∈ ℕ (𝑓𝑛)) = (vol‘ 𝑥))
6766adantl 482 . . . . . . . . . 10 (((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑓:ℕ–1-1-onto𝑥) → (vol‘ 𝑛 ∈ ℕ (𝑓𝑛)) = (vol‘ 𝑥))
6847, 62, 673eqtr2rd 2662 . . . . . . . . 9 (((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑓:ℕ–1-1-onto𝑥) → (vol‘ 𝑥) = Σ*𝑦𝑥(vol‘𝑦))
6968ex 450 . . . . . . . 8 ((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → (𝑓:ℕ–1-1-onto𝑥 → (vol‘ 𝑥) = Σ*𝑦𝑥(vol‘𝑦)))
7069exlimdv 1858 . . . . . . 7 ((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → (∃𝑓 𝑓:ℕ–1-1-onto𝑥 → (vol‘ 𝑥) = Σ*𝑦𝑥(vol‘𝑦)))
7170imp 445 . . . . . 6 (((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ ∃𝑓 𝑓:ℕ–1-1-onto𝑥) → (vol‘ 𝑥) = Σ*𝑦𝑥(vol‘𝑦))
7231, 71sylan2b 492 . . . . 5 (((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ ℕ ≈ 𝑥) → (vol‘ 𝑥) = Σ*𝑦𝑥(vol‘𝑦))
73 brdom2 7929 . . . . . . . 8 (𝑥 ≼ ω ↔ (𝑥 ≺ ω ∨ 𝑥 ≈ ω))
7473biimpi 206 . . . . . . 7 (𝑥 ≼ ω → (𝑥 ≺ ω ∨ 𝑥 ≈ ω))
75 isfinite2 8162 . . . . . . . 8 (𝑥 ≺ ω → 𝑥 ∈ Fin)
76 ensymb 7948 . . . . . . . . 9 (𝑥 ≈ ω ↔ ω ≈ 𝑥)
77 nnenom 12719 . . . . . . . . . 10 ℕ ≈ ω
78 entr 7952 . . . . . . . . . 10 ((ℕ ≈ ω ∧ ω ≈ 𝑥) → ℕ ≈ 𝑥)
7977, 78mpan 705 . . . . . . . . 9 (ω ≈ 𝑥 → ℕ ≈ 𝑥)
8076, 79sylbi 207 . . . . . . . 8 (𝑥 ≈ ω → ℕ ≈ 𝑥)
8175, 80orim12i 538 . . . . . . 7 ((𝑥 ≺ ω ∨ 𝑥 ≈ ω) → (𝑥 ∈ Fin ∨ ℕ ≈ 𝑥))
8274, 81syl 17 . . . . . 6 (𝑥 ≼ ω → (𝑥 ∈ Fin ∨ ℕ ≈ 𝑥))
8382ad2antrl 763 . . . . 5 ((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → (𝑥 ∈ Fin ∨ ℕ ≈ 𝑥))
8430, 72, 83mpjaodan 826 . . . 4 ((𝑥 ∈ 𝒫 dom vol ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → (vol‘ 𝑥) = Σ*𝑦𝑥(vol‘𝑦))
8584ex 450 . . 3 (𝑥 ∈ 𝒫 dom vol → ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (vol‘ 𝑥) = Σ*𝑦𝑥(vol‘𝑦)))
8685rgen 2917 . 2 𝑥 ∈ 𝒫 dom vol((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (vol‘ 𝑥) = Σ*𝑦𝑥(vol‘𝑦))
87 ismeas 30040 . . 3 (dom vol ∈ ran sigAlgebra → (vol ∈ (measures‘dom vol) ↔ (vol:dom vol⟶(0[,]+∞) ∧ (vol‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 dom vol((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (vol‘ 𝑥) = Σ*𝑦𝑥(vol‘𝑦)))))
884, 87ax-mp 5 . 2 (vol ∈ (measures‘dom vol) ↔ (vol:dom vol⟶(0[,]+∞) ∧ (vol‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 dom vol((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (vol‘ 𝑥) = Σ*𝑦𝑥(vol‘𝑦))))
891, 10, 86, 88mpbir3an 1242 1 vol ∈ (measures‘dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1480  wex 1701  wcel 1987  wral 2907  wss 3555  c0 3891  𝒫 cpw 4130   cuni 4402   ciun 4485  Disj wdisj 4583   class class class wbr 4613  dom cdm 5074  ran crn 5075  wf 5843  1-1-ontowf1o 5846  cfv 5847  (class class class)co 6604  ωcom 7012  cen 7896  cdom 7897  csdm 7898  Fincfn 7899  cr 9879  0cc0 9880  +∞cpnf 10015  cn 10964  [,]cicc 12120  vol*covol 23138  volcvol 23139  Σ*cesum 29867  sigAlgebracsiga 29948  measurescmeas 30036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cc 9201  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-disj 4584  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-fi 8261  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-xnn0 11308  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12121  df-ioc 12122  df-ico 12123  df-icc 12124  df-fz 12269  df-fzo 12407  df-fl 12533  df-mod 12609  df-seq 12742  df-exp 12801  df-fac 13001  df-bc 13030  df-hash 13058  df-shft 13741  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-limsup 14136  df-clim 14153  df-rlim 14154  df-sum 14351  df-ef 14723  df-sin 14725  df-cos 14726  df-pi 14728  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-hom 15887  df-cco 15888  df-rest 16004  df-topn 16005  df-0g 16023  df-gsum 16024  df-topgen 16025  df-pt 16026  df-prds 16029  df-ordt 16082  df-xrs 16083  df-qtop 16088  df-imas 16089  df-xps 16091  df-mre 16167  df-mrc 16168  df-acs 16170  df-ps 17121  df-tsr 17122  df-plusf 17162  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-mhm 17256  df-submnd 17257  df-grp 17346  df-minusg 17347  df-sbg 17348  df-mulg 17462  df-subg 17512  df-cntz 17671  df-cmn 18116  df-abl 18117  df-mgp 18411  df-ur 18423  df-ring 18470  df-cring 18471  df-subrg 18699  df-abv 18738  df-lmod 18786  df-scaf 18787  df-sra 19091  df-rgmod 19092  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-fbas 19662  df-fg 19663  df-cnfld 19666  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-cld 20733  df-ntr 20734  df-cls 20735  df-nei 20812  df-lp 20850  df-perf 20851  df-cn 20941  df-cnp 20942  df-haus 21029  df-tx 21275  df-hmeo 21468  df-fil 21560  df-fm 21652  df-flim 21653  df-flf 21654  df-tmd 21786  df-tgp 21787  df-tsms 21840  df-trg 21873  df-xms 22035  df-ms 22036  df-tms 22037  df-nm 22297  df-ngp 22298  df-nrg 22300  df-nlm 22301  df-ii 22588  df-cncf 22589  df-ovol 23140  df-vol 23141  df-limc 23536  df-dv 23537  df-log 24207  df-esum 29868  df-siga 29949  df-meas 30037
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator