MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  volun Structured version   Visualization version   GIF version

Theorem volun 23034
Description: The Lebesgue measure function is finitely additive. (Contributed by Mario Carneiro, 18-Mar-2014.)
Assertion
Ref Expression
volun (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘(𝐴𝐵)) = ((vol‘𝐴) + (vol‘𝐵)))

Proof of Theorem volun
StepHypRef Expression
1 simpl1 1056 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → 𝐴 ∈ dom vol)
2 mblss 23020 . . . . . . . 8 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
31, 2syl 17 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → 𝐴 ⊆ ℝ)
4 simpl2 1057 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → 𝐵 ∈ dom vol)
5 mblss 23020 . . . . . . . 8 (𝐵 ∈ dom vol → 𝐵 ⊆ ℝ)
64, 5syl 17 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → 𝐵 ⊆ ℝ)
73, 6unssd 3747 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (𝐴𝐵) ⊆ ℝ)
8 readdcl 9872 . . . . . . . 8 (((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → ((vol*‘𝐴) + (vol*‘𝐵)) ∈ ℝ)
98adantl 480 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → ((vol*‘𝐴) + (vol*‘𝐵)) ∈ ℝ)
10 simprl 789 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (vol*‘𝐴) ∈ ℝ)
11 simprr 791 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (vol*‘𝐵) ∈ ℝ)
12 ovolun 22988 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (vol*‘(𝐴𝐵)) ≤ ((vol*‘𝐴) + (vol*‘𝐵)))
133, 10, 6, 11, 12syl22anc 1318 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (vol*‘(𝐴𝐵)) ≤ ((vol*‘𝐴) + (vol*‘𝐵)))
14 ovollecl 22972 . . . . . . 7 (((𝐴𝐵) ⊆ ℝ ∧ ((vol*‘𝐴) + (vol*‘𝐵)) ∈ ℝ ∧ (vol*‘(𝐴𝐵)) ≤ ((vol*‘𝐴) + (vol*‘𝐵))) → (vol*‘(𝐴𝐵)) ∈ ℝ)
157, 9, 13, 14syl3anc 1317 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (vol*‘(𝐴𝐵)) ∈ ℝ)
16 mblsplit 23021 . . . . . 6 ((𝐴 ∈ dom vol ∧ (𝐴𝐵) ⊆ ℝ ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) → (vol*‘(𝐴𝐵)) = ((vol*‘((𝐴𝐵) ∩ 𝐴)) + (vol*‘((𝐴𝐵) ∖ 𝐴))))
171, 7, 15, 16syl3anc 1317 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (vol*‘(𝐴𝐵)) = ((vol*‘((𝐴𝐵) ∩ 𝐴)) + (vol*‘((𝐴𝐵) ∖ 𝐴))))
18 simpl3 1058 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (𝐴𝐵) = ∅)
19 indir 3830 . . . . . . . . . 10 ((𝐴𝐵) ∩ 𝐴) = ((𝐴𝐴) ∪ (𝐵𝐴))
20 inidm 3780 . . . . . . . . . . . 12 (𝐴𝐴) = 𝐴
21 incom 3763 . . . . . . . . . . . 12 (𝐵𝐴) = (𝐴𝐵)
2220, 21uneq12i 3723 . . . . . . . . . . 11 ((𝐴𝐴) ∪ (𝐵𝐴)) = (𝐴 ∪ (𝐴𝐵))
23 unabs 3812 . . . . . . . . . . 11 (𝐴 ∪ (𝐴𝐵)) = 𝐴
2422, 23eqtri 2628 . . . . . . . . . 10 ((𝐴𝐴) ∪ (𝐵𝐴)) = 𝐴
2519, 24eqtri 2628 . . . . . . . . 9 ((𝐴𝐵) ∩ 𝐴) = 𝐴
2625a1i 11 . . . . . . . 8 ((𝐴𝐵) = ∅ → ((𝐴𝐵) ∩ 𝐴) = 𝐴)
2726fveq2d 6089 . . . . . . 7 ((𝐴𝐵) = ∅ → (vol*‘((𝐴𝐵) ∩ 𝐴)) = (vol*‘𝐴))
2821eqeq1i 2611 . . . . . . . . . . 11 ((𝐵𝐴) = ∅ ↔ (𝐴𝐵) = ∅)
29 disj3 3969 . . . . . . . . . . 11 ((𝐵𝐴) = ∅ ↔ 𝐵 = (𝐵𝐴))
3028, 29bitr3i 264 . . . . . . . . . 10 ((𝐴𝐵) = ∅ ↔ 𝐵 = (𝐵𝐴))
3130biimpi 204 . . . . . . . . 9 ((𝐴𝐵) = ∅ → 𝐵 = (𝐵𝐴))
32 uncom 3715 . . . . . . . . . . 11 (𝐴𝐵) = (𝐵𝐴)
3332difeq1i 3682 . . . . . . . . . 10 ((𝐴𝐵) ∖ 𝐴) = ((𝐵𝐴) ∖ 𝐴)
34 difun2 3996 . . . . . . . . . 10 ((𝐵𝐴) ∖ 𝐴) = (𝐵𝐴)
3533, 34eqtri 2628 . . . . . . . . 9 ((𝐴𝐵) ∖ 𝐴) = (𝐵𝐴)
3631, 35syl6reqr 2659 . . . . . . . 8 ((𝐴𝐵) = ∅ → ((𝐴𝐵) ∖ 𝐴) = 𝐵)
3736fveq2d 6089 . . . . . . 7 ((𝐴𝐵) = ∅ → (vol*‘((𝐴𝐵) ∖ 𝐴)) = (vol*‘𝐵))
3827, 37oveq12d 6542 . . . . . 6 ((𝐴𝐵) = ∅ → ((vol*‘((𝐴𝐵) ∩ 𝐴)) + (vol*‘((𝐴𝐵) ∖ 𝐴))) = ((vol*‘𝐴) + (vol*‘𝐵)))
3918, 38syl 17 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → ((vol*‘((𝐴𝐵) ∩ 𝐴)) + (vol*‘((𝐴𝐵) ∖ 𝐴))) = ((vol*‘𝐴) + (vol*‘𝐵)))
4017, 39eqtrd 2640 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (vol*‘(𝐴𝐵)) = ((vol*‘𝐴) + (vol*‘𝐵)))
4140ex 448 . . 3 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) → (((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → (vol*‘(𝐴𝐵)) = ((vol*‘𝐴) + (vol*‘𝐵))))
42 mblvol 23019 . . . . . 6 (𝐴 ∈ dom vol → (vol‘𝐴) = (vol*‘𝐴))
4342eleq1d 2668 . . . . 5 (𝐴 ∈ dom vol → ((vol‘𝐴) ∈ ℝ ↔ (vol*‘𝐴) ∈ ℝ))
44 mblvol 23019 . . . . . 6 (𝐵 ∈ dom vol → (vol‘𝐵) = (vol*‘𝐵))
4544eleq1d 2668 . . . . 5 (𝐵 ∈ dom vol → ((vol‘𝐵) ∈ ℝ ↔ (vol*‘𝐵) ∈ ℝ))
4643, 45bi2anan9 912 . . . 4 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → (((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ) ↔ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)))
47463adant3 1073 . . 3 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) → (((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ) ↔ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)))
48 unmbl 23026 . . . . . 6 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → (𝐴𝐵) ∈ dom vol)
49 mblvol 23019 . . . . . 6 ((𝐴𝐵) ∈ dom vol → (vol‘(𝐴𝐵)) = (vol*‘(𝐴𝐵)))
5048, 49syl 17 . . . . 5 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → (vol‘(𝐴𝐵)) = (vol*‘(𝐴𝐵)))
5142, 44oveqan12d 6543 . . . . 5 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → ((vol‘𝐴) + (vol‘𝐵)) = ((vol*‘𝐴) + (vol*‘𝐵)))
5250, 51eqeq12d 2621 . . . 4 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → ((vol‘(𝐴𝐵)) = ((vol‘𝐴) + (vol‘𝐵)) ↔ (vol*‘(𝐴𝐵)) = ((vol*‘𝐴) + (vol*‘𝐵))))
53523adant3 1073 . . 3 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) → ((vol‘(𝐴𝐵)) = ((vol‘𝐴) + (vol‘𝐵)) ↔ (vol*‘(𝐴𝐵)) = ((vol*‘𝐴) + (vol*‘𝐵))))
5441, 47, 533imtr4d 281 . 2 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) → (((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ) → (vol‘(𝐴𝐵)) = ((vol‘𝐴) + (vol‘𝐵))))
5554imp 443 1 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘(𝐴𝐵)) = ((vol‘𝐴) + (vol‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976  cdif 3533  cun 3534  cin 3535  wss 3536  c0 3870   class class class wbr 4574  dom cdm 5025  cfv 5787  (class class class)co 6524  cr 9788   + caddc 9792  cle 9928  vol*covol 22952  volcvol 22953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821  ax-cnex 9845  ax-resscn 9846  ax-1cn 9847  ax-icn 9848  ax-addcl 9849  ax-addrcl 9850  ax-mulcl 9851  ax-mulrcl 9852  ax-mulcom 9853  ax-addass 9854  ax-mulass 9855  ax-distr 9856  ax-i2m1 9857  ax-1ne0 9858  ax-1rid 9859  ax-rnegex 9860  ax-rrecex 9861  ax-cnre 9862  ax-pre-lttri 9863  ax-pre-lttrn 9864  ax-pre-ltadd 9865  ax-pre-mulgt0 9866  ax-pre-sup 9867
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-nel 2779  df-ral 2897  df-rex 2898  df-reu 2899  df-rmo 2900  df-rab 2901  df-v 3171  df-sbc 3399  df-csb 3496  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-pss 3552  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-tp 4126  df-op 4128  df-uni 4364  df-iun 4448  df-br 4575  df-opab 4635  df-mpt 4636  df-tr 4672  df-eprel 4936  df-id 4940  df-po 4946  df-so 4947  df-fr 4984  df-we 4986  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-pred 5580  df-ord 5626  df-on 5627  df-lim 5628  df-suc 5629  df-iota 5751  df-fun 5789  df-fn 5790  df-f 5791  df-f1 5792  df-fo 5793  df-f1o 5794  df-fv 5795  df-riota 6486  df-ov 6527  df-oprab 6528  df-mpt2 6529  df-om 6932  df-1st 7033  df-2nd 7034  df-wrecs 7268  df-recs 7329  df-rdg 7367  df-er 7603  df-map 7720  df-en 7816  df-dom 7817  df-sdom 7818  df-sup 8205  df-inf 8206  df-pnf 9929  df-mnf 9930  df-xr 9931  df-ltxr 9932  df-le 9933  df-sub 10116  df-neg 10117  df-div 10531  df-nn 10865  df-2 10923  df-3 10924  df-n0 11137  df-z 11208  df-uz 11517  df-q 11618  df-rp 11662  df-ioo 12003  df-ico 12005  df-icc 12006  df-fz 12150  df-fl 12407  df-seq 12616  df-exp 12675  df-cj 13630  df-re 13631  df-im 13632  df-sqrt 13766  df-abs 13767  df-ovol 22954  df-vol 22955
This theorem is referenced by:  volinun  23035  volfiniun  23036  volsup  23045  ovolioo  23057  ismblfin  32420  volioc  38665  volico  38677
  Copyright terms: Public domain W3C validator