Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonicclem1 Structured version   Visualization version   GIF version

Theorem vonicclem1 41218
Description: The sequence of the measures of the half-open intervals converges to the measure of their intersection. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
vonicclem1.x (𝜑𝑋 ∈ Fin)
vonicclem1.a (𝜑𝐴:𝑋⟶ℝ)
vonicclem1.b (𝜑𝐵:𝑋⟶ℝ)
vonicclem1.u (𝜑𝑋 ≠ ∅)
vonicclem1.t ((𝜑𝑘𝑋) → (𝐴𝑘) ≤ (𝐵𝑘))
vonicclem1.c 𝐶 = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))))
vonicclem1.d 𝐷 = (𝑛 ∈ ℕ ↦ X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)))
vonicclem1.s 𝑆 = (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛)))
Assertion
Ref Expression
vonicclem1 (𝜑𝑆 ⇝ ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
Distinct variable groups:   𝐴,𝑘,𝑛   𝐵,𝑛   𝐶,𝑘   𝑘,𝑋,𝑛   𝜑,𝑘,𝑛
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑛)   𝐷(𝑘,𝑛)   𝑆(𝑘,𝑛)

Proof of Theorem vonicclem1
StepHypRef Expression
1 vonicclem1.s . . . 4 𝑆 = (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛)))
21a1i 11 . . 3 (𝜑𝑆 = (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))))
3 simpr 476 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
4 vonicclem1.d . . . . . . . . . 10 𝐷 = (𝑛 ∈ ℕ ↦ X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)))
54a1i 11 . . . . . . . . 9 (𝜑𝐷 = (𝑛 ∈ ℕ ↦ X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘))))
6 vonicclem1.x . . . . . . . . . . . 12 (𝜑𝑋 ∈ Fin)
76adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ Fin)
8 eqid 2651 . . . . . . . . . . 11 dom (voln‘𝑋) = dom (voln‘𝑋)
9 vonicclem1.a . . . . . . . . . . . 12 (𝜑𝐴:𝑋⟶ℝ)
109adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝐴:𝑋⟶ℝ)
11 vonicclem1.b . . . . . . . . . . . . . . . 16 (𝜑𝐵:𝑋⟶ℝ)
1211ffvelrnda 6399 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
1312adantlr 751 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
14 nnrecre 11095 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
1514ad2antlr 763 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / 𝑛) ∈ ℝ)
1613, 15readdcld 10107 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐵𝑘) + (1 / 𝑛)) ∈ ℝ)
17 eqid 2651 . . . . . . . . . . . . 13 (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))) = (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛)))
1816, 17fmptd 6425 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))):𝑋⟶ℝ)
19 vonicclem1.c . . . . . . . . . . . . . . 15 𝐶 = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))))
2019a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐶 = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛)))))
216mptexd 6528 . . . . . . . . . . . . . . 15 (𝜑 → (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))) ∈ V)
2221adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))) ∈ V)
2320, 22fvmpt2d 6332 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐶𝑛) = (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))))
2423feq1d 6068 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ((𝐶𝑛):𝑋⟶ℝ ↔ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))):𝑋⟶ℝ))
2518, 24mpbird 247 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝐶𝑛):𝑋⟶ℝ)
267, 8, 10, 25hoimbl 41166 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)) ∈ dom (voln‘𝑋))
2726elexd 3245 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)) ∈ V)
285, 27fvmpt2d 6332 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) = X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)))
293, 28syldan 486 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) = X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)))
3029fveq2d 6233 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((voln‘𝑋)‘(𝐷𝑛)) = ((voln‘𝑋)‘X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘))))
31 vonicclem1.u . . . . . . . 8 (𝜑𝑋 ≠ ∅)
3231adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑋 ≠ ∅)
333, 25syldan 486 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐶𝑛):𝑋⟶ℝ)
34 eqid 2651 . . . . . . 7 X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)) = X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘))
357, 32, 10, 33, 34vonn0hoi 41205 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((voln‘𝑋)‘X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘))) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)((𝐶𝑛)‘𝑘))))
3610ffvelrnda 6399 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
373, 36syldanl 735 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
3833ffvelrnda 6399 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶𝑛)‘𝑘) ∈ ℝ)
39 volico 40518 . . . . . . . . 9 (((𝐴𝑘) ∈ ℝ ∧ ((𝐶𝑛)‘𝑘) ∈ ℝ) → (vol‘((𝐴𝑘)[,)((𝐶𝑛)‘𝑘))) = if((𝐴𝑘) < ((𝐶𝑛)‘𝑘), (((𝐶𝑛)‘𝑘) − (𝐴𝑘)), 0))
4037, 38, 39syl2anc 694 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (vol‘((𝐴𝑘)[,)((𝐶𝑛)‘𝑘))) = if((𝐴𝑘) < ((𝐶𝑛)‘𝑘), (((𝐶𝑛)‘𝑘) − (𝐴𝑘)), 0))
413, 13syldanl 735 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
42 vonicclem1.t . . . . . . . . . . 11 ((𝜑𝑘𝑋) → (𝐴𝑘) ≤ (𝐵𝑘))
4342adantlr 751 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴𝑘) ≤ (𝐵𝑘))
44 nnrp 11880 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
4544rpreccld 11920 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ+)
4645ad2antlr 763 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / 𝑛) ∈ ℝ+)
4741, 46ltaddrpd 11943 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐵𝑘) < ((𝐵𝑘) + (1 / 𝑛)))
4816elexd 3245 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐵𝑘) + (1 / 𝑛)) ∈ V)
4923, 48fvmpt2d 6332 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶𝑛)‘𝑘) = ((𝐵𝑘) + (1 / 𝑛)))
503, 49syldanl 735 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶𝑛)‘𝑘) = ((𝐵𝑘) + (1 / 𝑛)))
5147, 50breqtrrd 4713 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐵𝑘) < ((𝐶𝑛)‘𝑘))
5237, 41, 38, 43, 51lelttrd 10233 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴𝑘) < ((𝐶𝑛)‘𝑘))
5352iftrued 4127 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → if((𝐴𝑘) < ((𝐶𝑛)‘𝑘), (((𝐶𝑛)‘𝑘) − (𝐴𝑘)), 0) = (((𝐶𝑛)‘𝑘) − (𝐴𝑘)))
5440, 53eqtrd 2685 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (vol‘((𝐴𝑘)[,)((𝐶𝑛)‘𝑘))) = (((𝐶𝑛)‘𝑘) − (𝐴𝑘)))
5554prodeq2dv 14697 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)((𝐶𝑛)‘𝑘))) = ∏𝑘𝑋 (((𝐶𝑛)‘𝑘) − (𝐴𝑘)))
5630, 35, 553eqtrd 2689 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((voln‘𝑋)‘(𝐷𝑛)) = ∏𝑘𝑋 (((𝐶𝑛)‘𝑘) − (𝐴𝑘)))
5749oveq1d 6705 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (((𝐶𝑛)‘𝑘) − (𝐴𝑘)) = (((𝐵𝑘) + (1 / 𝑛)) − (𝐴𝑘)))
5813recnd 10106 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐵𝑘) ∈ ℂ)
5915recnd 10106 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / 𝑛) ∈ ℂ)
6036recnd 10106 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴𝑘) ∈ ℂ)
6158, 59, 60addsubd 10451 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (((𝐵𝑘) + (1 / 𝑛)) − (𝐴𝑘)) = (((𝐵𝑘) − (𝐴𝑘)) + (1 / 𝑛)))
6257, 61eqtrd 2685 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (((𝐶𝑛)‘𝑘) − (𝐴𝑘)) = (((𝐵𝑘) − (𝐴𝑘)) + (1 / 𝑛)))
6362prodeq2dv 14697 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ∏𝑘𝑋 (((𝐶𝑛)‘𝑘) − (𝐴𝑘)) = ∏𝑘𝑋 (((𝐵𝑘) − (𝐴𝑘)) + (1 / 𝑛)))
6456, 63eqtrd 2685 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((voln‘𝑋)‘(𝐷𝑛)) = ∏𝑘𝑋 (((𝐵𝑘) − (𝐴𝑘)) + (1 / 𝑛)))
6564mpteq2dva 4777 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) = (𝑛 ∈ ℕ ↦ ∏𝑘𝑋 (((𝐵𝑘) − (𝐴𝑘)) + (1 / 𝑛))))
662, 65eqtrd 2685 . 2 (𝜑𝑆 = (𝑛 ∈ ℕ ↦ ∏𝑘𝑋 (((𝐵𝑘) − (𝐴𝑘)) + (1 / 𝑛))))
67 nfv 1883 . . 3 𝑘𝜑
689ffvelrnda 6399 . . . . 5 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
6912, 68resubcld 10496 . . . 4 ((𝜑𝑘𝑋) → ((𝐵𝑘) − (𝐴𝑘)) ∈ ℝ)
7069recnd 10106 . . 3 ((𝜑𝑘𝑋) → ((𝐵𝑘) − (𝐴𝑘)) ∈ ℂ)
71 eqid 2651 . . 3 (𝑛 ∈ ℕ ↦ ∏𝑘𝑋 (((𝐵𝑘) − (𝐴𝑘)) + (1 / 𝑛))) = (𝑛 ∈ ℕ ↦ ∏𝑘𝑋 (((𝐵𝑘) − (𝐴𝑘)) + (1 / 𝑛)))
7267, 6, 70, 71fprodaddrecnncnv 40442 . 2 (𝜑 → (𝑛 ∈ ℕ ↦ ∏𝑘𝑋 (((𝐵𝑘) − (𝐴𝑘)) + (1 / 𝑛))) ⇝ ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
7366, 72eqbrtrd 4707 1 (𝜑𝑆 ⇝ ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  wne 2823  Vcvv 3231  c0 3948  ifcif 4119   class class class wbr 4685  cmpt 4762  dom cdm 5143  wf 5922  cfv 5926  (class class class)co 6690  Xcixp 7950  Fincfn 7997  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   < clt 10112  cle 10113  cmin 10304   / cdiv 10722  cn 11058  +crp 11870  [,)cico 12215  cli 14259  cprod 14679  volcvol 23278  volncvoln 41073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cc 9295  ax-ac2 9323  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-disj 4653  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-tpos 7397  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-omul 7610  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-acn 8806  df-ac 8977  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-rlim 14264  df-sum 14461  df-prod 14680  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-grp 17472  df-minusg 17473  df-mulg 17588  df-subg 17638  df-cntz 17796  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-ring 18595  df-cring 18596  df-oppr 18669  df-dvdsr 18687  df-unit 18688  df-invr 18718  df-dvr 18729  df-drng 18797  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cn 21079  df-cnp 21080  df-cmp 21238  df-tx 21413  df-hmeo 21606  df-xms 22172  df-ms 22173  df-tms 22174  df-cncf 22728  df-ovol 23279  df-vol 23280  df-salg 40847  df-sumge0 40898  df-mea 40985  df-ome 41025  df-caragen 41027  df-ovoln 41072  df-voln 41074
This theorem is referenced by:  vonicclem2  41219
  Copyright terms: Public domain W3C validator