Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonicclem2 Structured version   Visualization version   GIF version

Theorem vonicclem2 40661
Description: The n-dimensional Lebesgue measure of closed intervals. This is the second statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
vonicclem2.x (𝜑𝑋 ∈ Fin)
vonicclem2.a (𝜑𝐴:𝑋⟶ℝ)
vonicclem2.b (𝜑𝐵:𝑋⟶ℝ)
vonicclem2.n (𝜑𝑋 ≠ ∅)
vonicclem2.t ((𝜑𝑘𝑋) → (𝐴𝑘) ≤ (𝐵𝑘))
vonicclem2.i 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘))
vonicclem2.c 𝐶 = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))))
vonicclem2.d 𝐷 = (𝑛 ∈ ℕ ↦ X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)))
Assertion
Ref Expression
vonicclem2 (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
Distinct variable groups:   𝐴,𝑘,𝑛   𝐵,𝑘,𝑛   𝐶,𝑘,𝑛   𝐷,𝑛   𝑛,𝐼   𝑘,𝑋,𝑛   𝜑,𝑘,𝑛
Allowed substitution hints:   𝐷(𝑘)   𝐼(𝑘)

Proof of Theorem vonicclem2
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 nfv 1841 . . . 4 𝑛𝜑
2 vonicclem2.x . . . . 5 (𝜑𝑋 ∈ Fin)
32vonmea 40551 . . . 4 (𝜑 → (voln‘𝑋) ∈ Meas)
4 1zzd 11393 . . . 4 (𝜑 → 1 ∈ ℤ)
5 nnuz 11708 . . . 4 ℕ = (ℤ‘1)
62adantr 481 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ Fin)
7 eqid 2620 . . . . . 6 dom (voln‘𝑋) = dom (voln‘𝑋)
8 vonicclem2.a . . . . . . 7 (𝜑𝐴:𝑋⟶ℝ)
98adantr 481 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝐴:𝑋⟶ℝ)
10 vonicclem2.b . . . . . . . . . . 11 (𝜑𝐵:𝑋⟶ℝ)
1110ffvelrnda 6345 . . . . . . . . . 10 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
1211adantlr 750 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
13 nnrecre 11042 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
1413ad2antlr 762 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / 𝑛) ∈ ℝ)
1512, 14readdcld 10054 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐵𝑘) + (1 / 𝑛)) ∈ ℝ)
16 eqid 2620 . . . . . . . 8 (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))) = (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛)))
1715, 16fmptd 6371 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))):𝑋⟶ℝ)
18 vonicclem2.c . . . . . . . . . 10 𝐶 = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))))
1918a1i 11 . . . . . . . . 9 (𝜑𝐶 = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛)))))
202mptexd 6472 . . . . . . . . . 10 (𝜑 → (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))) ∈ V)
2120adantr 481 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))) ∈ V)
2219, 21fvmpt2d 6280 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐶𝑛) = (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))))
2322feq1d 6017 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝐶𝑛):𝑋⟶ℝ ↔ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))):𝑋⟶ℝ))
2417, 23mpbird 247 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐶𝑛):𝑋⟶ℝ)
256, 7, 9, 24hoimbl 40608 . . . . 5 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)) ∈ dom (voln‘𝑋))
26 vonicclem2.d . . . . 5 𝐷 = (𝑛 ∈ ℕ ↦ X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)))
2725, 26fmptd 6371 . . . 4 (𝜑𝐷:ℕ⟶dom (voln‘𝑋))
28 nfv 1841 . . . . . 6 𝑘(𝜑𝑛 ∈ ℕ)
29 ressxr 10068 . . . . . . . . 9 ℝ ⊆ ℝ*
308ffvelrnda 6345 . . . . . . . . 9 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
3129, 30sseldi 3593 . . . . . . . 8 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ*)
3231adantlr 750 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴𝑘) ∈ ℝ*)
33 ovexd 6665 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐵𝑘) + (1 / 𝑛)) ∈ V)
3422, 33fvmpt2d 6280 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶𝑛)‘𝑘) = ((𝐵𝑘) + (1 / 𝑛)))
3534, 15eqeltrd 2699 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶𝑛)‘𝑘) ∈ ℝ)
3635rexrd 10074 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶𝑛)‘𝑘) ∈ ℝ*)
379ffvelrnda 6345 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
3837leidd 10579 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴𝑘) ≤ (𝐴𝑘))
39 1red 10040 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 1 ∈ ℝ)
40 nnre 11012 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
4140, 39readdcld 10054 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℝ)
42 peano2nn 11017 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
43 nnne0 11038 . . . . . . . . . . . 12 ((𝑛 + 1) ∈ ℕ → (𝑛 + 1) ≠ 0)
4442, 43syl 17 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝑛 + 1) ≠ 0)
4539, 41, 44redivcld 10838 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / (𝑛 + 1)) ∈ ℝ)
4645ad2antlr 762 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / (𝑛 + 1)) ∈ ℝ)
4740ltp1d 10939 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 < (𝑛 + 1))
48 nnrp 11827 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
4942nnrpd 11855 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℝ+)
5048, 49ltrecd 11875 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛 < (𝑛 + 1) ↔ (1 / (𝑛 + 1)) < (1 / 𝑛)))
5147, 50mpbid 222 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (1 / (𝑛 + 1)) < (1 / 𝑛))
5245, 13, 51ltled 10170 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / (𝑛 + 1)) ≤ (1 / 𝑛))
5352ad2antlr 762 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / (𝑛 + 1)) ≤ (1 / 𝑛))
5446, 14, 12, 53leadd2dd 10627 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐵𝑘) + (1 / (𝑛 + 1))) ≤ ((𝐵𝑘) + (1 / 𝑛)))
55 oveq2 6643 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → (1 / 𝑛) = (1 / 𝑚))
5655oveq2d 6651 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → ((𝐵𝑘) + (1 / 𝑛)) = ((𝐵𝑘) + (1 / 𝑚)))
5756mpteq2dv 4736 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))) = (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑚))))
5857cbvmptv 4741 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛)))) = (𝑚 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑚))))
5918, 58eqtri 2642 . . . . . . . . . . . 12 𝐶 = (𝑚 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑚))))
6059a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝐶 = (𝑚 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑚)))))
61 oveq2 6643 . . . . . . . . . . . . . 14 (𝑚 = (𝑛 + 1) → (1 / 𝑚) = (1 / (𝑛 + 1)))
6261oveq2d 6651 . . . . . . . . . . . . 13 (𝑚 = (𝑛 + 1) → ((𝐵𝑘) + (1 / 𝑚)) = ((𝐵𝑘) + (1 / (𝑛 + 1))))
6362mpteq2dv 4736 . . . . . . . . . . . 12 (𝑚 = (𝑛 + 1) → (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑚))) = (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / (𝑛 + 1)))))
6463adantl 482 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 = (𝑛 + 1)) → (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑚))) = (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / (𝑛 + 1)))))
65 simpr 477 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
6665peano2nnd 11022 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
676mptexd 6472 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / (𝑛 + 1)))) ∈ V)
6860, 64, 66, 67fvmptd 6275 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐶‘(𝑛 + 1)) = (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / (𝑛 + 1)))))
69 ovexd 6665 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐵𝑘) + (1 / (𝑛 + 1))) ∈ V)
7068, 69fvmpt2d 6280 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶‘(𝑛 + 1))‘𝑘) = ((𝐵𝑘) + (1 / (𝑛 + 1))))
7170, 34breq12d 4657 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (((𝐶‘(𝑛 + 1))‘𝑘) ≤ ((𝐶𝑛)‘𝑘) ↔ ((𝐵𝑘) + (1 / (𝑛 + 1))) ≤ ((𝐵𝑘) + (1 / 𝑛))))
7254, 71mpbird 247 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶‘(𝑛 + 1))‘𝑘) ≤ ((𝐶𝑛)‘𝑘))
73 icossico 12228 . . . . . . 7 ((((𝐴𝑘) ∈ ℝ* ∧ ((𝐶𝑛)‘𝑘) ∈ ℝ*) ∧ ((𝐴𝑘) ≤ (𝐴𝑘) ∧ ((𝐶‘(𝑛 + 1))‘𝑘) ≤ ((𝐶𝑛)‘𝑘))) → ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ⊆ ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)))
7432, 36, 38, 72, 73syl22anc 1325 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ⊆ ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)))
7528, 74ixpssixp 39089 . . . . 5 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ⊆ X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)))
76 fveq2 6178 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (𝐶𝑛) = (𝐶𝑚))
7776fveq1d 6180 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((𝐶𝑛)‘𝑘) = ((𝐶𝑚)‘𝑘))
7877oveq2d 6651 . . . . . . . . . . 11 (𝑛 = 𝑚 → ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)) = ((𝐴𝑘)[,)((𝐶𝑚)‘𝑘)))
7978ixpeq2dv 7909 . . . . . . . . . 10 (𝑛 = 𝑚X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)) = X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑚)‘𝑘)))
8079cbvmptv 4741 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘))) = (𝑚 ∈ ℕ ↦ X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑚)‘𝑘)))
8126, 80eqtri 2642 . . . . . . . 8 𝐷 = (𝑚 ∈ ℕ ↦ X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑚)‘𝑘)))
8281a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝐷 = (𝑚 ∈ ℕ ↦ X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑚)‘𝑘))))
83 fveq2 6178 . . . . . . . . . . 11 (𝑚 = (𝑛 + 1) → (𝐶𝑚) = (𝐶‘(𝑛 + 1)))
8483fveq1d 6180 . . . . . . . . . 10 (𝑚 = (𝑛 + 1) → ((𝐶𝑚)‘𝑘) = ((𝐶‘(𝑛 + 1))‘𝑘))
8584oveq2d 6651 . . . . . . . . 9 (𝑚 = (𝑛 + 1) → ((𝐴𝑘)[,)((𝐶𝑚)‘𝑘)) = ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)))
8685ixpeq2dv 7909 . . . . . . . 8 (𝑚 = (𝑛 + 1) → X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑚)‘𝑘)) = X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)))
8786adantl 482 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 = (𝑛 + 1)) → X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑚)‘𝑘)) = X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)))
88 ovex 6663 . . . . . . . . . 10 ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ∈ V
8988rgenw 2921 . . . . . . . . 9 𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ∈ V
90 ixpexg 7917 . . . . . . . . 9 (∀𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ∈ V → X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ∈ V)
9189, 90ax-mp 5 . . . . . . . 8 X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ∈ V
9291a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ∈ V)
9382, 87, 66, 92fvmptd 6275 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐷‘(𝑛 + 1)) = X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)))
9426a1i 11 . . . . . . 7 (𝜑𝐷 = (𝑛 ∈ ℕ ↦ X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘))))
9525elexd 3209 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)) ∈ V)
9694, 95fvmpt2d 6280 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) = X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)))
9793, 96sseq12d 3626 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝐷‘(𝑛 + 1)) ⊆ (𝐷𝑛) ↔ X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ⊆ X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘))))
9875, 97mpbird 247 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐷‘(𝑛 + 1)) ⊆ (𝐷𝑛))
99 1nn 11016 . . . . . 6 1 ∈ ℕ
10099, 5eleqtri 2697 . . . . 5 1 ∈ (ℤ‘1)
101100a1i 11 . . . 4 (𝜑 → 1 ∈ (ℤ‘1))
102 fveq2 6178 . . . . . . . . . . 11 (𝑛 = 1 → (𝐶𝑛) = (𝐶‘1))
103102fveq1d 6180 . . . . . . . . . 10 (𝑛 = 1 → ((𝐶𝑛)‘𝑘) = ((𝐶‘1)‘𝑘))
104103oveq2d 6651 . . . . . . . . 9 (𝑛 = 1 → ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)) = ((𝐴𝑘)[,)((𝐶‘1)‘𝑘)))
105104ixpeq2dv 7909 . . . . . . . 8 (𝑛 = 1 → X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)) = X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘1)‘𝑘)))
106105adantl 482 . . . . . . 7 ((𝜑𝑛 = 1) → X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)) = X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘1)‘𝑘)))
10799a1i 11 . . . . . . 7 (𝜑 → 1 ∈ ℕ)
108 ovex 6663 . . . . . . . . . 10 ((𝐴𝑘)[,)((𝐶‘1)‘𝑘)) ∈ V
109108rgenw 2921 . . . . . . . . 9 𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘1)‘𝑘)) ∈ V
110 ixpexg 7917 . . . . . . . . 9 (∀𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘1)‘𝑘)) ∈ V → X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘1)‘𝑘)) ∈ V)
111109, 110ax-mp 5 . . . . . . . 8 X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘1)‘𝑘)) ∈ V
112111a1i 11 . . . . . . 7 (𝜑X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘1)‘𝑘)) ∈ V)
11394, 106, 107, 112fvmptd 6275 . . . . . 6 (𝜑 → (𝐷‘1) = X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘1)‘𝑘)))
114113fveq2d 6182 . . . . 5 (𝜑 → ((voln‘𝑋)‘(𝐷‘1)) = ((voln‘𝑋)‘X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘1)‘𝑘))))
115 nfv 1841 . . . . . 6 𝑘𝜑
116 simpl 473 . . . . . . 7 ((𝜑𝑘𝑋) → 𝜑)
11799a1i 11 . . . . . . 7 ((𝜑𝑘𝑋) → 1 ∈ ℕ)
118 simpr 477 . . . . . . 7 ((𝜑𝑘𝑋) → 𝑘𝑋)
11999elexi 3208 . . . . . . . 8 1 ∈ V
120 eleq1 2687 . . . . . . . . . . 11 (𝑛 = 1 → (𝑛 ∈ ℕ ↔ 1 ∈ ℕ))
121120anbi2d 739 . . . . . . . . . 10 (𝑛 = 1 → ((𝜑𝑛 ∈ ℕ) ↔ (𝜑 ∧ 1 ∈ ℕ)))
122121anbi1d 740 . . . . . . . . 9 (𝑛 = 1 → (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) ↔ ((𝜑 ∧ 1 ∈ ℕ) ∧ 𝑘𝑋)))
123103eleq1d 2684 . . . . . . . . 9 (𝑛 = 1 → (((𝐶𝑛)‘𝑘) ∈ ℝ ↔ ((𝐶‘1)‘𝑘) ∈ ℝ))
124122, 123imbi12d 334 . . . . . . . 8 (𝑛 = 1 → ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶𝑛)‘𝑘) ∈ ℝ) ↔ (((𝜑 ∧ 1 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶‘1)‘𝑘) ∈ ℝ)))
125119, 124, 35vtocl 3254 . . . . . . 7 (((𝜑 ∧ 1 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶‘1)‘𝑘) ∈ ℝ)
126116, 117, 118, 125syl21anc 1323 . . . . . 6 ((𝜑𝑘𝑋) → ((𝐶‘1)‘𝑘) ∈ ℝ)
127115, 2, 30, 126vonhoire 40649 . . . . 5 (𝜑 → ((voln‘𝑋)‘X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘1)‘𝑘))) ∈ ℝ)
128114, 127eqeltrd 2699 . . . 4 (𝜑 → ((voln‘𝑋)‘(𝐷‘1)) ∈ ℝ)
129 eqid 2620 . . . 4 (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) = (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛)))
1301, 3, 4, 5, 27, 98, 101, 128, 129meaiininc 40464 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ⇝ ((voln‘𝑋)‘ 𝑛 ∈ ℕ (𝐷𝑛)))
131115, 30, 11iinhoiicc 40651 . . . . . . 7 (𝜑 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴𝑘)[,)((𝐵𝑘) + (1 / 𝑛))) = X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘)))
13234oveq2d 6651 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)) = ((𝐴𝑘)[,)((𝐵𝑘) + (1 / 𝑛))))
133132ixpeq2dva 7908 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)) = X𝑘𝑋 ((𝐴𝑘)[,)((𝐵𝑘) + (1 / 𝑛))))
13496, 133eqtrd 2654 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) = X𝑘𝑋 ((𝐴𝑘)[,)((𝐵𝑘) + (1 / 𝑛))))
135134iineq2dv 4534 . . . . . . 7 (𝜑 𝑛 ∈ ℕ (𝐷𝑛) = 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴𝑘)[,)((𝐵𝑘) + (1 / 𝑛))))
136 vonicclem2.i . . . . . . . 8 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘))
137136a1i 11 . . . . . . 7 (𝜑𝐼 = X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘)))
138131, 135, 1373eqtr4d 2664 . . . . . 6 (𝜑 𝑛 ∈ ℕ (𝐷𝑛) = 𝐼)
139138eqcomd 2626 . . . . 5 (𝜑𝐼 = 𝑛 ∈ ℕ (𝐷𝑛))
140139fveq2d 6182 . . . 4 (𝜑 → ((voln‘𝑋)‘𝐼) = ((voln‘𝑋)‘ 𝑛 ∈ ℕ (𝐷𝑛)))
141140eqcomd 2626 . . 3 (𝜑 → ((voln‘𝑋)‘ 𝑛 ∈ ℕ (𝐷𝑛)) = ((voln‘𝑋)‘𝐼))
142130, 141breqtrd 4670 . 2 (𝜑 → (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ⇝ ((voln‘𝑋)‘𝐼))
143 fveq2 6178 . . . . . 6 (𝑛 = 𝑚 → (𝐷𝑛) = (𝐷𝑚))
144143fveq2d 6182 . . . . 5 (𝑛 = 𝑚 → ((voln‘𝑋)‘(𝐷𝑛)) = ((voln‘𝑋)‘(𝐷𝑚)))
145144cbvmptv 4741 . . . 4 (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) = (𝑚 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑚)))
146145a1i 11 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) = (𝑚 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑚))))
147 vonicclem2.n . . . 4 (𝜑𝑋 ≠ ∅)
148 vonicclem2.t . . . 4 ((𝜑𝑘𝑋) → (𝐴𝑘) ≤ (𝐵𝑘))
149145eqcomi 2629 . . . 4 (𝑚 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑚))) = (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛)))
1502, 8, 10, 147, 148, 18, 26, 149vonicclem1 40660 . . 3 (𝜑 → (𝑚 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑚))) ⇝ ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
151146, 150eqbrtrd 4666 . 2 (𝜑 → (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ⇝ ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
152 climuni 14264 . 2 (((𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ⇝ ((voln‘𝑋)‘𝐼) ∧ (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ⇝ ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘))) → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
153142, 151, 152syl2anc 692 1 (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1481  wcel 1988  wne 2791  wral 2909  Vcvv 3195  wss 3567  c0 3907   ciin 4512   class class class wbr 4644  cmpt 4720  dom cdm 5104  wf 5872  cfv 5876  (class class class)co 6635  Xcixp 7893  Fincfn 7940  cr 9920  0cc0 9921  1c1 9922   + caddc 9924  *cxr 10058   < clt 10059  cle 10060  cmin 10251   / cdiv 10669  cn 11005  cuz 11672  [,)cico 12162  [,]cicc 12163  cli 14196  cprod 14616  volncvoln 40515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523  ax-cc 9242  ax-ac2 9270  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999  ax-addf 10000  ax-mulf 10001
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-fal 1487  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-iin 4514  df-disj 4612  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-of 6882  df-om 7051  df-1st 7153  df-2nd 7154  df-supp 7281  df-tpos 7337  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-2o 7546  df-oadd 7549  df-omul 7550  df-er 7727  df-map 7844  df-pm 7845  df-ixp 7894  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-fsupp 8261  df-fi 8302  df-sup 8333  df-inf 8334  df-oi 8400  df-card 8750  df-acn 8753  df-ac 8924  df-cda 8975  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-4 11066  df-5 11067  df-6 11068  df-7 11069  df-8 11070  df-9 11071  df-n0 11278  df-z 11363  df-dec 11479  df-uz 11673  df-q 11774  df-rp 11818  df-xneg 11931  df-xadd 11932  df-xmul 11933  df-ioo 12164  df-ico 12166  df-icc 12167  df-fz 12312  df-fzo 12450  df-fl 12576  df-seq 12785  df-exp 12844  df-hash 13101  df-cj 13820  df-re 13821  df-im 13822  df-sqrt 13956  df-abs 13957  df-clim 14200  df-rlim 14201  df-sum 14398  df-prod 14617  df-struct 15840  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-ress 15846  df-plusg 15935  df-mulr 15936  df-starv 15937  df-sca 15938  df-vsca 15939  df-ip 15940  df-tset 15941  df-ple 15942  df-ds 15945  df-unif 15946  df-hom 15947  df-cco 15948  df-rest 16064  df-topn 16065  df-0g 16083  df-gsum 16084  df-topgen 16085  df-pt 16086  df-prds 16089  df-xrs 16143  df-qtop 16148  df-imas 16149  df-xps 16151  df-mre 16227  df-mrc 16228  df-acs 16230  df-mgm 17223  df-sgrp 17265  df-mnd 17276  df-submnd 17317  df-grp 17406  df-minusg 17407  df-mulg 17522  df-subg 17572  df-cntz 17731  df-cmn 18176  df-abl 18177  df-mgp 18471  df-ur 18483  df-ring 18530  df-cring 18531  df-oppr 18604  df-dvdsr 18622  df-unit 18623  df-invr 18653  df-dvr 18664  df-drng 18730  df-psmet 19719  df-xmet 19720  df-met 19721  df-bl 19722  df-mopn 19723  df-cnfld 19728  df-top 20680  df-topon 20697  df-topsp 20718  df-bases 20731  df-cn 21012  df-cnp 21013  df-cmp 21171  df-tx 21346  df-hmeo 21539  df-xms 22106  df-ms 22107  df-tms 22108  df-cncf 22662  df-ovol 23214  df-vol 23215  df-salg 40292  df-sumge0 40343  df-mea 40430  df-ome 40467  df-caragen 40469  df-ovoln 40514  df-voln 40516
This theorem is referenced by:  vonicc  40662
  Copyright terms: Public domain W3C validator