Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonicclem2 Structured version   Visualization version   GIF version

Theorem vonicclem2 39374
Description: The n-dimensional Lebesgue measure of closed intervals. This is the second statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
vonicclem2.x (𝜑𝑋 ∈ Fin)
vonicclem2.a (𝜑𝐴:𝑋⟶ℝ)
vonicclem2.b (𝜑𝐵:𝑋⟶ℝ)
vonicclem2.n (𝜑𝑋 ≠ ∅)
vonicclem2.t ((𝜑𝑘𝑋) → (𝐴𝑘) ≤ (𝐵𝑘))
vonicclem2.i 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘))
vonicclem2.c 𝐶 = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))))
vonicclem2.d 𝐷 = (𝑛 ∈ ℕ ↦ X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)))
Assertion
Ref Expression
vonicclem2 (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
Distinct variable groups:   𝐴,𝑘,𝑛   𝐵,𝑘,𝑛   𝐶,𝑘,𝑛   𝐷,𝑛   𝑛,𝐼   𝑘,𝑋,𝑛   𝜑,𝑘,𝑛
Allowed substitution hints:   𝐷(𝑘)   𝐼(𝑘)

Proof of Theorem vonicclem2
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 nfv 1828 . . . 4 𝑛𝜑
2 vonicclem2.x . . . . 5 (𝜑𝑋 ∈ Fin)
32vonmea 39263 . . . 4 (𝜑 → (voln‘𝑋) ∈ Meas)
4 1zzd 11236 . . . 4 (𝜑 → 1 ∈ ℤ)
5 nnuz 11550 . . . 4 ℕ = (ℤ‘1)
62adantr 479 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ Fin)
7 eqid 2604 . . . . . 6 dom (voln‘𝑋) = dom (voln‘𝑋)
8 vonicclem2.a . . . . . . 7 (𝜑𝐴:𝑋⟶ℝ)
98adantr 479 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝐴:𝑋⟶ℝ)
10 vonicclem2.b . . . . . . . . . . 11 (𝜑𝐵:𝑋⟶ℝ)
1110ffvelrnda 6247 . . . . . . . . . 10 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
1211adantlr 746 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
13 nnrecre 10899 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
1413ad2antlr 758 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / 𝑛) ∈ ℝ)
1512, 14readdcld 9920 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐵𝑘) + (1 / 𝑛)) ∈ ℝ)
16 eqid 2604 . . . . . . . 8 (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))) = (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛)))
1715, 16fmptd 6272 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))):𝑋⟶ℝ)
18 vonicclem2.c . . . . . . . . . 10 𝐶 = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))))
1918a1i 11 . . . . . . . . 9 (𝜑𝐶 = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛)))))
202mptexd 6364 . . . . . . . . . 10 (𝜑 → (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))) ∈ V)
2120adantr 479 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))) ∈ V)
2219, 21fvmpt2d 6182 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐶𝑛) = (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))))
2322feq1d 5924 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝐶𝑛):𝑋⟶ℝ ↔ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))):𝑋⟶ℝ))
2417, 23mpbird 245 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐶𝑛):𝑋⟶ℝ)
256, 7, 9, 24hoimbl 39320 . . . . 5 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)) ∈ dom (voln‘𝑋))
26 vonicclem2.d . . . . 5 𝐷 = (𝑛 ∈ ℕ ↦ X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)))
2725, 26fmptd 6272 . . . 4 (𝜑𝐷:ℕ⟶dom (voln‘𝑋))
28 nfv 1828 . . . . . 6 𝑘(𝜑𝑛 ∈ ℕ)
29 ressxr 9934 . . . . . . . . 9 ℝ ⊆ ℝ*
308ffvelrnda 6247 . . . . . . . . 9 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
3129, 30sseldi 3560 . . . . . . . 8 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ*)
3231adantlr 746 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴𝑘) ∈ ℝ*)
3315elexd 3181 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐵𝑘) + (1 / 𝑛)) ∈ V)
3422, 33fvmpt2d 6182 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶𝑛)‘𝑘) = ((𝐵𝑘) + (1 / 𝑛)))
3534, 15eqeltrd 2682 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶𝑛)‘𝑘) ∈ ℝ)
3635rexrd 9940 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶𝑛)‘𝑘) ∈ ℝ*)
379ffvelrnda 6247 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
3837leidd 10438 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴𝑘) ≤ (𝐴𝑘))
39 1red 9906 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 1 ∈ ℝ)
40 nnre 10869 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
4140, 39readdcld 9920 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℝ)
42 peano2nn 10874 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
43 nnne0 10895 . . . . . . . . . . . 12 ((𝑛 + 1) ∈ ℕ → (𝑛 + 1) ≠ 0)
4442, 43syl 17 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝑛 + 1) ≠ 0)
4539, 41, 44redivcld 10697 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / (𝑛 + 1)) ∈ ℝ)
4645ad2antlr 758 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / (𝑛 + 1)) ∈ ℝ)
4740ltp1d 10798 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 < (𝑛 + 1))
48 nnrp 11669 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
4942nnrpd 11697 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℝ+)
5048, 49ltrecd 11717 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛 < (𝑛 + 1) ↔ (1 / (𝑛 + 1)) < (1 / 𝑛)))
5147, 50mpbid 220 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (1 / (𝑛 + 1)) < (1 / 𝑛))
5245, 13, 51ltled 10031 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / (𝑛 + 1)) ≤ (1 / 𝑛))
5352ad2antlr 758 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / (𝑛 + 1)) ≤ (1 / 𝑛))
5446, 14, 12, 53leadd2dd 10486 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐵𝑘) + (1 / (𝑛 + 1))) ≤ ((𝐵𝑘) + (1 / 𝑛)))
55 oveq2 6530 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → (1 / 𝑛) = (1 / 𝑚))
5655oveq2d 6538 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → ((𝐵𝑘) + (1 / 𝑛)) = ((𝐵𝑘) + (1 / 𝑚)))
5756mpteq2dv 4662 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))) = (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑚))))
5857cbvmptv 4667 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛)))) = (𝑚 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑚))))
5918, 58eqtri 2626 . . . . . . . . . . . 12 𝐶 = (𝑚 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑚))))
6059a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝐶 = (𝑚 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑚)))))
61 oveq2 6530 . . . . . . . . . . . . . 14 (𝑚 = (𝑛 + 1) → (1 / 𝑚) = (1 / (𝑛 + 1)))
6261oveq2d 6538 . . . . . . . . . . . . 13 (𝑚 = (𝑛 + 1) → ((𝐵𝑘) + (1 / 𝑚)) = ((𝐵𝑘) + (1 / (𝑛 + 1))))
6362mpteq2dv 4662 . . . . . . . . . . . 12 (𝑚 = (𝑛 + 1) → (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑚))) = (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / (𝑛 + 1)))))
6463adantl 480 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 = (𝑛 + 1)) → (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑚))) = (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / (𝑛 + 1)))))
65 simpr 475 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
6665peano2nnd 10879 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
676mptexd 6364 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / (𝑛 + 1)))) ∈ V)
6860, 64, 66, 67fvmptd 6177 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐶‘(𝑛 + 1)) = (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / (𝑛 + 1)))))
69 ovex 6550 . . . . . . . . . . 11 ((𝐵𝑘) + (1 / (𝑛 + 1))) ∈ V
7069a1i 11 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐵𝑘) + (1 / (𝑛 + 1))) ∈ V)
7168, 70fvmpt2d 6182 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶‘(𝑛 + 1))‘𝑘) = ((𝐵𝑘) + (1 / (𝑛 + 1))))
7271, 34breq12d 4585 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (((𝐶‘(𝑛 + 1))‘𝑘) ≤ ((𝐶𝑛)‘𝑘) ↔ ((𝐵𝑘) + (1 / (𝑛 + 1))) ≤ ((𝐵𝑘) + (1 / 𝑛))))
7354, 72mpbird 245 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶‘(𝑛 + 1))‘𝑘) ≤ ((𝐶𝑛)‘𝑘))
74 icossico 12065 . . . . . . 7 ((((𝐴𝑘) ∈ ℝ* ∧ ((𝐶𝑛)‘𝑘) ∈ ℝ*) ∧ ((𝐴𝑘) ≤ (𝐴𝑘) ∧ ((𝐶‘(𝑛 + 1))‘𝑘) ≤ ((𝐶𝑛)‘𝑘))) → ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ⊆ ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)))
7532, 36, 38, 73, 74syl22anc 1318 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ⊆ ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)))
7628, 75ixpssixp 38095 . . . . 5 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ⊆ X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)))
77 fveq2 6083 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (𝐶𝑛) = (𝐶𝑚))
7877fveq1d 6085 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((𝐶𝑛)‘𝑘) = ((𝐶𝑚)‘𝑘))
7978oveq2d 6538 . . . . . . . . . . 11 (𝑛 = 𝑚 → ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)) = ((𝐴𝑘)[,)((𝐶𝑚)‘𝑘)))
8079ixpeq2dv 7782 . . . . . . . . . 10 (𝑛 = 𝑚X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)) = X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑚)‘𝑘)))
8180cbvmptv 4667 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘))) = (𝑚 ∈ ℕ ↦ X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑚)‘𝑘)))
8226, 81eqtri 2626 . . . . . . . 8 𝐷 = (𝑚 ∈ ℕ ↦ X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑚)‘𝑘)))
8382a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝐷 = (𝑚 ∈ ℕ ↦ X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑚)‘𝑘))))
84 fveq2 6083 . . . . . . . . . . 11 (𝑚 = (𝑛 + 1) → (𝐶𝑚) = (𝐶‘(𝑛 + 1)))
8584fveq1d 6085 . . . . . . . . . 10 (𝑚 = (𝑛 + 1) → ((𝐶𝑚)‘𝑘) = ((𝐶‘(𝑛 + 1))‘𝑘))
8685oveq2d 6538 . . . . . . . . 9 (𝑚 = (𝑛 + 1) → ((𝐴𝑘)[,)((𝐶𝑚)‘𝑘)) = ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)))
8786ixpeq2dv 7782 . . . . . . . 8 (𝑚 = (𝑛 + 1) → X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑚)‘𝑘)) = X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)))
8887adantl 480 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 = (𝑛 + 1)) → X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑚)‘𝑘)) = X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)))
89 ovex 6550 . . . . . . . . . 10 ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ∈ V
9089rgenw 2902 . . . . . . . . 9 𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ∈ V
91 ixpexg 7790 . . . . . . . . 9 (∀𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ∈ V → X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ∈ V)
9290, 91ax-mp 5 . . . . . . . 8 X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ∈ V
9392a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ∈ V)
9483, 88, 66, 93fvmptd 6177 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐷‘(𝑛 + 1)) = X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)))
9526a1i 11 . . . . . . 7 (𝜑𝐷 = (𝑛 ∈ ℕ ↦ X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘))))
9625elexd 3181 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)) ∈ V)
9795, 96fvmpt2d 6182 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) = X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)))
9894, 97sseq12d 3591 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝐷‘(𝑛 + 1)) ⊆ (𝐷𝑛) ↔ X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘(𝑛 + 1))‘𝑘)) ⊆ X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘))))
9976, 98mpbird 245 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐷‘(𝑛 + 1)) ⊆ (𝐷𝑛))
100 1nn 10873 . . . . . 6 1 ∈ ℕ
101100, 5eleqtri 2680 . . . . 5 1 ∈ (ℤ‘1)
102101a1i 11 . . . 4 (𝜑 → 1 ∈ (ℤ‘1))
103 fveq2 6083 . . . . . . . . . . 11 (𝑛 = 1 → (𝐶𝑛) = (𝐶‘1))
104103fveq1d 6085 . . . . . . . . . 10 (𝑛 = 1 → ((𝐶𝑛)‘𝑘) = ((𝐶‘1)‘𝑘))
105104oveq2d 6538 . . . . . . . . 9 (𝑛 = 1 → ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)) = ((𝐴𝑘)[,)((𝐶‘1)‘𝑘)))
106105ixpeq2dv 7782 . . . . . . . 8 (𝑛 = 1 → X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)) = X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘1)‘𝑘)))
107106adantl 480 . . . . . . 7 ((𝜑𝑛 = 1) → X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)) = X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘1)‘𝑘)))
108100a1i 11 . . . . . . 7 (𝜑 → 1 ∈ ℕ)
109 ovex 6550 . . . . . . . . . 10 ((𝐴𝑘)[,)((𝐶‘1)‘𝑘)) ∈ V
110109rgenw 2902 . . . . . . . . 9 𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘1)‘𝑘)) ∈ V
111 ixpexg 7790 . . . . . . . . 9 (∀𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘1)‘𝑘)) ∈ V → X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘1)‘𝑘)) ∈ V)
112110, 111ax-mp 5 . . . . . . . 8 X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘1)‘𝑘)) ∈ V
113112a1i 11 . . . . . . 7 (𝜑X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘1)‘𝑘)) ∈ V)
11495, 107, 108, 113fvmptd 6177 . . . . . 6 (𝜑 → (𝐷‘1) = X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘1)‘𝑘)))
115114fveq2d 6087 . . . . 5 (𝜑 → ((voln‘𝑋)‘(𝐷‘1)) = ((voln‘𝑋)‘X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘1)‘𝑘))))
116 nfv 1828 . . . . . 6 𝑘𝜑
117 simpl 471 . . . . . . 7 ((𝜑𝑘𝑋) → 𝜑)
118100a1i 11 . . . . . . 7 ((𝜑𝑘𝑋) → 1 ∈ ℕ)
119 simpr 475 . . . . . . 7 ((𝜑𝑘𝑋) → 𝑘𝑋)
120100elexi 3180 . . . . . . . 8 1 ∈ V
121 eleq1 2670 . . . . . . . . . . 11 (𝑛 = 1 → (𝑛 ∈ ℕ ↔ 1 ∈ ℕ))
122121anbi2d 735 . . . . . . . . . 10 (𝑛 = 1 → ((𝜑𝑛 ∈ ℕ) ↔ (𝜑 ∧ 1 ∈ ℕ)))
123122anbi1d 736 . . . . . . . . 9 (𝑛 = 1 → (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) ↔ ((𝜑 ∧ 1 ∈ ℕ) ∧ 𝑘𝑋)))
124104eleq1d 2666 . . . . . . . . 9 (𝑛 = 1 → (((𝐶𝑛)‘𝑘) ∈ ℝ ↔ ((𝐶‘1)‘𝑘) ∈ ℝ))
125123, 124imbi12d 332 . . . . . . . 8 (𝑛 = 1 → ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶𝑛)‘𝑘) ∈ ℝ) ↔ (((𝜑 ∧ 1 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶‘1)‘𝑘) ∈ ℝ)))
126120, 125, 35vtocl 3226 . . . . . . 7 (((𝜑 ∧ 1 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶‘1)‘𝑘) ∈ ℝ)
127117, 118, 119, 126syl21anc 1316 . . . . . 6 ((𝜑𝑘𝑋) → ((𝐶‘1)‘𝑘) ∈ ℝ)
128116, 2, 30, 127vonhoire 39362 . . . . 5 (𝜑 → ((voln‘𝑋)‘X𝑘𝑋 ((𝐴𝑘)[,)((𝐶‘1)‘𝑘))) ∈ ℝ)
129115, 128eqeltrd 2682 . . . 4 (𝜑 → ((voln‘𝑋)‘(𝐷‘1)) ∈ ℝ)
130 eqid 2604 . . . 4 (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) = (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛)))
1311, 3, 4, 5, 27, 99, 102, 129, 130meaiininc 39176 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ⇝ ((voln‘𝑋)‘ 𝑛 ∈ ℕ (𝐷𝑛)))
132116, 30, 11iinhoiicc 39364 . . . . . . 7 (𝜑 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴𝑘)[,)((𝐵𝑘) + (1 / 𝑛))) = X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘)))
13334oveq2d 6538 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)) = ((𝐴𝑘)[,)((𝐵𝑘) + (1 / 𝑛))))
134133ixpeq2dva 7781 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)) = X𝑘𝑋 ((𝐴𝑘)[,)((𝐵𝑘) + (1 / 𝑛))))
13597, 134eqtrd 2638 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) = X𝑘𝑋 ((𝐴𝑘)[,)((𝐵𝑘) + (1 / 𝑛))))
136135iineq2dv 4468 . . . . . . 7 (𝜑 𝑛 ∈ ℕ (𝐷𝑛) = 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴𝑘)[,)((𝐵𝑘) + (1 / 𝑛))))
137 vonicclem2.i . . . . . . . 8 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘))
138137a1i 11 . . . . . . 7 (𝜑𝐼 = X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘)))
139132, 136, 1383eqtr4d 2648 . . . . . 6 (𝜑 𝑛 ∈ ℕ (𝐷𝑛) = 𝐼)
140139eqcomd 2610 . . . . 5 (𝜑𝐼 = 𝑛 ∈ ℕ (𝐷𝑛))
141140fveq2d 6087 . . . 4 (𝜑 → ((voln‘𝑋)‘𝐼) = ((voln‘𝑋)‘ 𝑛 ∈ ℕ (𝐷𝑛)))
142141eqcomd 2610 . . 3 (𝜑 → ((voln‘𝑋)‘ 𝑛 ∈ ℕ (𝐷𝑛)) = ((voln‘𝑋)‘𝐼))
143131, 142breqtrd 4598 . 2 (𝜑 → (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ⇝ ((voln‘𝑋)‘𝐼))
144 fveq2 6083 . . . . . 6 (𝑛 = 𝑚 → (𝐷𝑛) = (𝐷𝑚))
145144fveq2d 6087 . . . . 5 (𝑛 = 𝑚 → ((voln‘𝑋)‘(𝐷𝑛)) = ((voln‘𝑋)‘(𝐷𝑚)))
146145cbvmptv 4667 . . . 4 (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) = (𝑚 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑚)))
147146a1i 11 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) = (𝑚 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑚))))
148 vonicclem2.n . . . 4 (𝜑𝑋 ≠ ∅)
149 vonicclem2.t . . . 4 ((𝜑𝑘𝑋) → (𝐴𝑘) ≤ (𝐵𝑘))
150146eqcomi 2613 . . . 4 (𝑚 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑚))) = (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛)))
1512, 8, 10, 148, 149, 18, 26, 150vonicclem1 39373 . . 3 (𝜑 → (𝑚 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑚))) ⇝ ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
152147, 151eqbrtrd 4594 . 2 (𝜑 → (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ⇝ ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
153 climuni 14072 . 2 (((𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ⇝ ((voln‘𝑋)‘𝐼) ∧ (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ⇝ ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘))) → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
154143, 152, 153syl2anc 690 1 (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1975  wne 2774  wral 2890  Vcvv 3167  wss 3534  c0 3868   ciin 4445   class class class wbr 4572  cmpt 4632  dom cdm 5023  wf 5781  cfv 5785  (class class class)co 6522  Xcixp 7766  Fincfn 7813  cr 9786  0cc0 9787  1c1 9788   + caddc 9790  *cxr 9924   < clt 9925  cle 9926  cmin 10112   / cdiv 10528  cn 10862  cuz 11514  [,)cico 11999  [,]cicc 12000  cli 14004  cprod 14415  volncvoln 39227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2227  ax-ext 2584  ax-rep 4688  ax-sep 4698  ax-nul 4707  ax-pow 4759  ax-pr 4823  ax-un 6819  ax-inf2 8393  ax-cc 9112  ax-ac2 9140  ax-cnex 9843  ax-resscn 9844  ax-1cn 9845  ax-icn 9846  ax-addcl 9847  ax-addrcl 9848  ax-mulcl 9849  ax-mulrcl 9850  ax-mulcom 9851  ax-addass 9852  ax-mulass 9853  ax-distr 9854  ax-i2m1 9855  ax-1ne0 9856  ax-1rid 9857  ax-rnegex 9858  ax-rrecex 9859  ax-cnre 9860  ax-pre-lttri 9861  ax-pre-lttrn 9862  ax-pre-ltadd 9863  ax-pre-mulgt0 9864  ax-pre-sup 9865  ax-addf 9866  ax-mulf 9867
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2456  df-mo 2457  df-clab 2591  df-cleq 2597  df-clel 2600  df-nfc 2734  df-ne 2776  df-nel 2777  df-ral 2895  df-rex 2896  df-reu 2897  df-rmo 2898  df-rab 2899  df-v 3169  df-sbc 3397  df-csb 3494  df-dif 3537  df-un 3539  df-in 3541  df-ss 3548  df-pss 3550  df-nul 3869  df-if 4031  df-pw 4104  df-sn 4120  df-pr 4122  df-tp 4124  df-op 4126  df-uni 4362  df-int 4400  df-iun 4446  df-iin 4447  df-disj 4543  df-br 4573  df-opab 4633  df-mpt 4634  df-tr 4670  df-eprel 4934  df-id 4938  df-po 4944  df-so 4945  df-fr 4982  df-se 4983  df-we 4984  df-xp 5029  df-rel 5030  df-cnv 5031  df-co 5032  df-dm 5033  df-rn 5034  df-res 5035  df-ima 5036  df-pred 5578  df-ord 5624  df-on 5625  df-lim 5626  df-suc 5627  df-iota 5749  df-fun 5787  df-fn 5788  df-f 5789  df-f1 5790  df-fo 5791  df-f1o 5792  df-fv 5793  df-isom 5794  df-riota 6484  df-ov 6525  df-oprab 6526  df-mpt2 6527  df-of 6767  df-om 6930  df-1st 7031  df-2nd 7032  df-supp 7155  df-tpos 7211  df-wrecs 7266  df-recs 7327  df-rdg 7365  df-1o 7419  df-2o 7420  df-oadd 7423  df-omul 7424  df-er 7601  df-map 7718  df-pm 7719  df-ixp 7767  df-en 7814  df-dom 7815  df-sdom 7816  df-fin 7817  df-fsupp 8131  df-fi 8172  df-sup 8203  df-inf 8204  df-oi 8270  df-card 8620  df-acn 8623  df-ac 8794  df-cda 8845  df-pnf 9927  df-mnf 9928  df-xr 9929  df-ltxr 9930  df-le 9931  df-sub 10114  df-neg 10115  df-div 10529  df-nn 10863  df-2 10921  df-3 10922  df-4 10923  df-5 10924  df-6 10925  df-7 10926  df-8 10927  df-9 10928  df-n0 11135  df-z 11206  df-dec 11321  df-uz 11515  df-q 11616  df-rp 11660  df-xneg 11773  df-xadd 11774  df-xmul 11775  df-ioo 12001  df-ico 12003  df-icc 12004  df-fz 12148  df-fzo 12285  df-fl 12405  df-seq 12614  df-exp 12673  df-hash 12930  df-cj 13628  df-re 13629  df-im 13630  df-sqrt 13764  df-abs 13765  df-clim 14008  df-rlim 14009  df-sum 14206  df-prod 14416  df-struct 15638  df-ndx 15639  df-slot 15640  df-base 15641  df-sets 15642  df-ress 15643  df-plusg 15722  df-mulr 15723  df-starv 15724  df-sca 15725  df-vsca 15726  df-ip 15727  df-tset 15728  df-ple 15729  df-ds 15732  df-unif 15733  df-hom 15734  df-cco 15735  df-rest 15847  df-topn 15848  df-0g 15866  df-gsum 15867  df-topgen 15868  df-pt 15869  df-prds 15872  df-xrs 15926  df-qtop 15931  df-imas 15932  df-xps 15934  df-mre 16010  df-mrc 16011  df-acs 16013  df-mgm 17006  df-sgrp 17048  df-mnd 17059  df-submnd 17100  df-grp 17189  df-minusg 17190  df-mulg 17305  df-subg 17355  df-cntz 17514  df-cmn 17959  df-abl 17960  df-mgp 18254  df-ur 18266  df-ring 18313  df-cring 18314  df-oppr 18387  df-dvdsr 18405  df-unit 18406  df-invr 18436  df-dvr 18447  df-drng 18513  df-psmet 19500  df-xmet 19501  df-met 19502  df-bl 19503  df-mopn 19504  df-cnfld 19509  df-top 20458  df-bases 20459  df-topon 20460  df-topsp 20461  df-cn 20778  df-cnp 20779  df-cmp 20937  df-tx 21112  df-hmeo 21305  df-xms 21871  df-ms 21872  df-tms 21873  df-cncf 22415  df-ovol 22952  df-vol 22953  df-salg 39004  df-sumge0 39055  df-mea 39142  df-ome 39179  df-caragen 39181  df-ovoln 39226  df-voln 39228
This theorem is referenced by:  vonicc  39375
  Copyright terms: Public domain W3C validator