Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonioo Structured version   Visualization version   GIF version

Theorem vonioo 40659
Description: The n-dimensional Lebesgue measure of an open interval. This is the first statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
vonioo.x (𝜑𝑋 ∈ Fin)
vonioo.a (𝜑𝐴:𝑋⟶ℝ)
vonioo.b (𝜑𝐵:𝑋⟶ℝ)
vonioo.i 𝐼 = X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘))
vonioo.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
Assertion
Ref Expression
vonioo (𝜑 → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
Distinct variable groups:   𝑥,𝑘   𝐴,𝑎,𝑏,𝑘   𝐵,𝑎,𝑏,𝑘   𝑘,𝐿   𝑋,𝑎,𝑏,𝑘,𝑥   𝜑,𝑎,𝑏,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐼(𝑥,𝑘,𝑎,𝑏)   𝐿(𝑥,𝑎,𝑏)

Proof of Theorem vonioo
Dummy variables 𝑗 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vonioo.l . . . . 5 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
2 vonioo.a . . . . . . 7 (𝜑𝐴:𝑋⟶ℝ)
32adantr 481 . . . . . 6 ((𝜑𝑋 = ∅) → 𝐴:𝑋⟶ℝ)
4 feq2 6014 . . . . . . 7 (𝑋 = ∅ → (𝐴:𝑋⟶ℝ ↔ 𝐴:∅⟶ℝ))
54adantl 482 . . . . . 6 ((𝜑𝑋 = ∅) → (𝐴:𝑋⟶ℝ ↔ 𝐴:∅⟶ℝ))
63, 5mpbid 222 . . . . 5 ((𝜑𝑋 = ∅) → 𝐴:∅⟶ℝ)
7 vonioo.b . . . . . . 7 (𝜑𝐵:𝑋⟶ℝ)
87adantr 481 . . . . . 6 ((𝜑𝑋 = ∅) → 𝐵:𝑋⟶ℝ)
9 feq2 6014 . . . . . . 7 (𝑋 = ∅ → (𝐵:𝑋⟶ℝ ↔ 𝐵:∅⟶ℝ))
109adantl 482 . . . . . 6 ((𝜑𝑋 = ∅) → (𝐵:𝑋⟶ℝ ↔ 𝐵:∅⟶ℝ))
118, 10mpbid 222 . . . . 5 ((𝜑𝑋 = ∅) → 𝐵:∅⟶ℝ)
121, 6, 11hoidmv0val 40560 . . . 4 ((𝜑𝑋 = ∅) → (𝐴(𝐿‘∅)𝐵) = 0)
1312eqcomd 2626 . . 3 ((𝜑𝑋 = ∅) → 0 = (𝐴(𝐿‘∅)𝐵))
14 fveq2 6178 . . . . . 6 (𝑋 = ∅ → (voln‘𝑋) = (voln‘∅))
15 vonioo.i . . . . . . . 8 𝐼 = X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘))
1615a1i 11 . . . . . . 7 (𝑋 = ∅ → 𝐼 = X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)))
17 ixpeq1 7904 . . . . . . 7 (𝑋 = ∅ → X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)) = X𝑘 ∈ ∅ ((𝐴𝑘)(,)(𝐵𝑘)))
1816, 17eqtrd 2654 . . . . . 6 (𝑋 = ∅ → 𝐼 = X𝑘 ∈ ∅ ((𝐴𝑘)(,)(𝐵𝑘)))
1914, 18fveq12d 6184 . . . . 5 (𝑋 = ∅ → ((voln‘𝑋)‘𝐼) = ((voln‘∅)‘X𝑘 ∈ ∅ ((𝐴𝑘)(,)(𝐵𝑘))))
2019adantl 482 . . . 4 ((𝜑𝑋 = ∅) → ((voln‘𝑋)‘𝐼) = ((voln‘∅)‘X𝑘 ∈ ∅ ((𝐴𝑘)(,)(𝐵𝑘))))
21 0fin 8173 . . . . . . 7 ∅ ∈ Fin
2221a1i 11 . . . . . 6 ((𝜑𝑋 = ∅) → ∅ ∈ Fin)
23 eqid 2620 . . . . . 6 dom (voln‘∅) = dom (voln‘∅)
24 ressxr 10068 . . . . . . . 8 ℝ ⊆ ℝ*
2524a1i 11 . . . . . . 7 ((𝜑𝑋 = ∅) → ℝ ⊆ ℝ*)
266, 25fssd 6044 . . . . . 6 ((𝜑𝑋 = ∅) → 𝐴:∅⟶ℝ*)
2711, 25fssd 6044 . . . . . 6 ((𝜑𝑋 = ∅) → 𝐵:∅⟶ℝ*)
2822, 23, 26, 27ioovonmbl 40654 . . . . 5 ((𝜑𝑋 = ∅) → X𝑘 ∈ ∅ ((𝐴𝑘)(,)(𝐵𝑘)) ∈ dom (voln‘∅))
2928von0val 40648 . . . 4 ((𝜑𝑋 = ∅) → ((voln‘∅)‘X𝑘 ∈ ∅ ((𝐴𝑘)(,)(𝐵𝑘))) = 0)
3020, 29eqtrd 2654 . . 3 ((𝜑𝑋 = ∅) → ((voln‘𝑋)‘𝐼) = 0)
31 fveq2 6178 . . . . 5 (𝑋 = ∅ → (𝐿𝑋) = (𝐿‘∅))
3231oveqd 6652 . . . 4 (𝑋 = ∅ → (𝐴(𝐿𝑋)𝐵) = (𝐴(𝐿‘∅)𝐵))
3332adantl 482 . . 3 ((𝜑𝑋 = ∅) → (𝐴(𝐿𝑋)𝐵) = (𝐴(𝐿‘∅)𝐵))
3413, 30, 333eqtr4d 2664 . 2 ((𝜑𝑋 = ∅) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
35 neqne 2799 . . . 4 𝑋 = ∅ → 𝑋 ≠ ∅)
3635adantl 482 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
37 nfv 1841 . . . . . . . . 9 𝑘(𝜑𝑋 ≠ ∅)
38 nfra1 2938 . . . . . . . . 9 𝑘𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)
3937, 38nfan 1826 . . . . . . . 8 𝑘((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘))
402ffvelrnda 6345 . . . . . . . . . . . 12 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
417ffvelrnda 6345 . . . . . . . . . . . 12 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
42 volico 39963 . . . . . . . . . . . 12 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = if((𝐴𝑘) < (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0))
4340, 41, 42syl2anc 692 . . . . . . . . . . 11 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = if((𝐴𝑘) < (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0))
4443ad4ant14 1291 . . . . . . . . . 10 ((((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) ∧ 𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = if((𝐴𝑘) < (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0))
45 rspa 2927 . . . . . . . . . . . 12 ((∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘) ∧ 𝑘𝑋) → (𝐴𝑘) < (𝐵𝑘))
4645iftrued 4085 . . . . . . . . . . 11 ((∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘) ∧ 𝑘𝑋) → if((𝐴𝑘) < (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0) = ((𝐵𝑘) − (𝐴𝑘)))
4746adantll 749 . . . . . . . . . 10 ((((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) ∧ 𝑘𝑋) → if((𝐴𝑘) < (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0) = ((𝐵𝑘) − (𝐴𝑘)))
4844, 47eqtrd 2654 . . . . . . . . 9 ((((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) ∧ 𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ((𝐵𝑘) − (𝐴𝑘)))
4948ex 450 . . . . . . . 8 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → (𝑘𝑋 → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ((𝐵𝑘) − (𝐴𝑘))))
5039, 49ralrimi 2954 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → ∀𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ((𝐵𝑘) − (𝐴𝑘)))
5150prodeq2d 14633 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
5251eqcomd 2626 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
53 fveq2 6178 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐴𝑘) = (𝐴𝑗))
54 fveq2 6178 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐵𝑘) = (𝐵𝑗))
5553, 54breq12d 4657 . . . . . . . . 9 (𝑘 = 𝑗 → ((𝐴𝑘) < (𝐵𝑘) ↔ (𝐴𝑗) < (𝐵𝑗)))
5655cbvralv 3166 . . . . . . . 8 (∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘) ↔ ∀𝑗𝑋 (𝐴𝑗) < (𝐵𝑗))
5756biimpi 206 . . . . . . 7 (∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘) → ∀𝑗𝑋 (𝐴𝑗) < (𝐵𝑗))
5857adantl 482 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → ∀𝑗𝑋 (𝐴𝑗) < (𝐵𝑗))
59 vonioo.x . . . . . . . . 9 (𝜑𝑋 ∈ Fin)
6059adantr 481 . . . . . . . 8 ((𝜑𝑋 ≠ ∅) → 𝑋 ∈ Fin)
6160adantr 481 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) < (𝐵𝑗)) → 𝑋 ∈ Fin)
622adantr 481 . . . . . . . 8 ((𝜑𝑋 ≠ ∅) → 𝐴:𝑋⟶ℝ)
6362adantr 481 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) < (𝐵𝑗)) → 𝐴:𝑋⟶ℝ)
647adantr 481 . . . . . . . 8 ((𝜑𝑋 ≠ ∅) → 𝐵:𝑋⟶ℝ)
6564adantr 481 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) < (𝐵𝑗)) → 𝐵:𝑋⟶ℝ)
66 simpr 477 . . . . . . . 8 ((𝜑𝑋 ≠ ∅) → 𝑋 ≠ ∅)
6766adantr 481 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) < (𝐵𝑗)) → 𝑋 ≠ ∅)
6856, 45sylanbr 490 . . . . . . . 8 ((∀𝑗𝑋 (𝐴𝑗) < (𝐵𝑗) ∧ 𝑘𝑋) → (𝐴𝑘) < (𝐵𝑘))
6968adantll 749 . . . . . . 7 ((((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) < (𝐵𝑗)) ∧ 𝑘𝑋) → (𝐴𝑘) < (𝐵𝑘))
70 fveq2 6178 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
7170oveq1d 6650 . . . . . . . . . . 11 (𝑗 = 𝑘 → ((𝐴𝑗) + (1 / 𝑚)) = ((𝐴𝑘) + (1 / 𝑚)))
7271cbvmptv 4741 . . . . . . . . . 10 (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))) = (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑚)))
7372a1i 11 . . . . . . . . 9 (𝑚 = 𝑛 → (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))) = (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑚))))
74 oveq2 6643 . . . . . . . . . . 11 (𝑚 = 𝑛 → (1 / 𝑚) = (1 / 𝑛))
7574oveq2d 6651 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝐴𝑘) + (1 / 𝑚)) = ((𝐴𝑘) + (1 / 𝑛)))
7675mpteq2dv 4736 . . . . . . . . 9 (𝑚 = 𝑛 → (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑚))) = (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))))
7773, 76eqtrd 2654 . . . . . . . 8 (𝑚 = 𝑛 → (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))) = (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))))
7877cbvmptv 4741 . . . . . . 7 (𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚)))) = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))))
79 nfcv 2762 . . . . . . . 8 𝑛X𝑘𝑋 ((((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑚)‘𝑘)[,)(𝐵𝑘))
80 nfcv 2762 . . . . . . . . 9 𝑚𝑋
81 nffvmpt1 6186 . . . . . . . . . . 11 𝑚((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑛)
82 nfcv 2762 . . . . . . . . . . 11 𝑚𝑘
8381, 82nffv 6185 . . . . . . . . . 10 𝑚(((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘)
84 nfcv 2762 . . . . . . . . . 10 𝑚[,)
85 nfcv 2762 . . . . . . . . . 10 𝑚(𝐵𝑘)
8683, 84, 85nfov 6661 . . . . . . . . 9 𝑚((((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘)[,)(𝐵𝑘))
8780, 86nfixp 7912 . . . . . . . 8 𝑚X𝑘𝑋 ((((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘)[,)(𝐵𝑘))
88 fveq2 6178 . . . . . . . . . . 11 (𝑚 = 𝑛 → ((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑚) = ((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑛))
8988fveq1d 6180 . . . . . . . . . 10 (𝑚 = 𝑛 → (((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑚)‘𝑘) = (((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘))
9089oveq1d 6650 . . . . . . . . 9 (𝑚 = 𝑛 → ((((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑚)‘𝑘)[,)(𝐵𝑘)) = ((((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘)[,)(𝐵𝑘)))
9190ixpeq2dv 7909 . . . . . . . 8 (𝑚 = 𝑛X𝑘𝑋 ((((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑚)‘𝑘)[,)(𝐵𝑘)) = X𝑘𝑋 ((((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘)[,)(𝐵𝑘)))
9279, 87, 91cbvmpt 4740 . . . . . . 7 (𝑚 ∈ ℕ ↦ X𝑘𝑋 ((((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑚)‘𝑘)[,)(𝐵𝑘))) = (𝑛 ∈ ℕ ↦ X𝑘𝑋 ((((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘)[,)(𝐵𝑘)))
9361, 63, 65, 67, 69, 15, 78, 92vonioolem2 40658 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) < (𝐵𝑗)) → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
9458, 93syldan 487 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
951, 60, 66, 62, 64hoidmvn0val 40561 . . . . . 6 ((𝜑𝑋 ≠ ∅) → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
9695adantr 481 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
9752, 94, 963eqtr4d 2664 . . . 4 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
98 rexnal 2992 . . . . . . . . . 10 (∃𝑘𝑋 ¬ (𝐴𝑘) < (𝐵𝑘) ↔ ¬ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘))
9998bicomi 214 . . . . . . . . 9 (¬ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘) ↔ ∃𝑘𝑋 ¬ (𝐴𝑘) < (𝐵𝑘))
10099biimpi 206 . . . . . . . 8 (¬ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘) → ∃𝑘𝑋 ¬ (𝐴𝑘) < (𝐵𝑘))
101100adantl 482 . . . . . . 7 ((𝜑 ∧ ¬ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → ∃𝑘𝑋 ¬ (𝐴𝑘) < (𝐵𝑘))
102 simpr 477 . . . . . . . . . . 11 (((𝜑𝑘𝑋) ∧ ¬ (𝐴𝑘) < (𝐵𝑘)) → ¬ (𝐴𝑘) < (𝐵𝑘))
10341adantr 481 . . . . . . . . . . . 12 (((𝜑𝑘𝑋) ∧ ¬ (𝐴𝑘) < (𝐵𝑘)) → (𝐵𝑘) ∈ ℝ)
10440adantr 481 . . . . . . . . . . . 12 (((𝜑𝑘𝑋) ∧ ¬ (𝐴𝑘) < (𝐵𝑘)) → (𝐴𝑘) ∈ ℝ)
105103, 104lenltd 10168 . . . . . . . . . . 11 (((𝜑𝑘𝑋) ∧ ¬ (𝐴𝑘) < (𝐵𝑘)) → ((𝐵𝑘) ≤ (𝐴𝑘) ↔ ¬ (𝐴𝑘) < (𝐵𝑘)))
106102, 105mpbird 247 . . . . . . . . . 10 (((𝜑𝑘𝑋) ∧ ¬ (𝐴𝑘) < (𝐵𝑘)) → (𝐵𝑘) ≤ (𝐴𝑘))
107106ex 450 . . . . . . . . 9 ((𝜑𝑘𝑋) → (¬ (𝐴𝑘) < (𝐵𝑘) → (𝐵𝑘) ≤ (𝐴𝑘)))
108107reximdva 3014 . . . . . . . 8 (𝜑 → (∃𝑘𝑋 ¬ (𝐴𝑘) < (𝐵𝑘) → ∃𝑘𝑋 (𝐵𝑘) ≤ (𝐴𝑘)))
109108adantr 481 . . . . . . 7 ((𝜑 ∧ ¬ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → (∃𝑘𝑋 ¬ (𝐴𝑘) < (𝐵𝑘) → ∃𝑘𝑋 (𝐵𝑘) ≤ (𝐴𝑘)))
110101, 109mpd 15 . . . . . 6 ((𝜑 ∧ ¬ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → ∃𝑘𝑋 (𝐵𝑘) ≤ (𝐴𝑘))
111110adantlr 750 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ ¬ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → ∃𝑘𝑋 (𝐵𝑘) ≤ (𝐴𝑘))
112 nfcv 2762 . . . . . . . . 9 𝑘(voln‘𝑋)
113 nfixp1 7913 . . . . . . . . . 10 𝑘X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘))
11415, 113nfcxfr 2760 . . . . . . . . 9 𝑘𝐼
115112, 114nffv 6185 . . . . . . . 8 𝑘((voln‘𝑋)‘𝐼)
116 nfcv 2762 . . . . . . . 8 𝑘(𝐴(𝐿𝑋)𝐵)
117115, 116nfeq 2773 . . . . . . 7 𝑘((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵)
11859vonmea 40551 . . . . . . . . . . . 12 (𝜑 → (voln‘𝑋) ∈ Meas)
119118mea0 40434 . . . . . . . . . . 11 (𝜑 → ((voln‘𝑋)‘∅) = 0)
1201193ad2ant1 1080 . . . . . . . . . 10 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → ((voln‘𝑋)‘∅) = 0)
12115a1i 11 . . . . . . . . . . . 12 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → 𝐼 = X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)))
122 simp2 1060 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → 𝑘𝑋)
123 simp3 1061 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → (𝐵𝑘) ≤ (𝐴𝑘))
12424, 40sseldi 3593 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ*)
1251243adant3 1079 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → (𝐴𝑘) ∈ ℝ*)
12624, 41sseldi 3593 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ*)
1271263adant3 1079 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → (𝐵𝑘) ∈ ℝ*)
128 ioo0 12185 . . . . . . . . . . . . . . . 16 (((𝐴𝑘) ∈ ℝ* ∧ (𝐵𝑘) ∈ ℝ*) → (((𝐴𝑘)(,)(𝐵𝑘)) = ∅ ↔ (𝐵𝑘) ≤ (𝐴𝑘)))
129125, 127, 128syl2anc 692 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → (((𝐴𝑘)(,)(𝐵𝑘)) = ∅ ↔ (𝐵𝑘) ≤ (𝐴𝑘)))
130123, 129mpbird 247 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → ((𝐴𝑘)(,)(𝐵𝑘)) = ∅)
131 rspe 3000 . . . . . . . . . . . . . 14 ((𝑘𝑋 ∧ ((𝐴𝑘)(,)(𝐵𝑘)) = ∅) → ∃𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)) = ∅)
132122, 130, 131syl2anc 692 . . . . . . . . . . . . 13 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → ∃𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)) = ∅)
133 ixp0 7926 . . . . . . . . . . . . 13 (∃𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)) = ∅ → X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)) = ∅)
134132, 133syl 17 . . . . . . . . . . . 12 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)) = ∅)
135121, 134eqtrd 2654 . . . . . . . . . . 11 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → 𝐼 = ∅)
136135fveq2d 6182 . . . . . . . . . 10 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → ((voln‘𝑋)‘𝐼) = ((voln‘𝑋)‘∅))
137 ne0i 3913 . . . . . . . . . . . . . 14 (𝑘𝑋𝑋 ≠ ∅)
138137adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑘𝑋) → 𝑋 ≠ ∅)
139138, 95syldan 487 . . . . . . . . . . . 12 ((𝜑𝑘𝑋) → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
1401393adant3 1079 . . . . . . . . . . 11 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
141 eleq1 2687 . . . . . . . . . . . . . 14 (𝑗 = 𝑘 → (𝑗𝑋𝑘𝑋))
142 fveq2 6178 . . . . . . . . . . . . . . 15 (𝑗 = 𝑘 → (𝐵𝑗) = (𝐵𝑘))
143142, 70breq12d 4657 . . . . . . . . . . . . . 14 (𝑗 = 𝑘 → ((𝐵𝑗) ≤ (𝐴𝑗) ↔ (𝐵𝑘) ≤ (𝐴𝑘)))
144141, 1433anbi23d 1400 . . . . . . . . . . . . 13 (𝑗 = 𝑘 → ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) ↔ (𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘))))
145144imbi1d 331 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0) ↔ ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)))
146 nfv 1841 . . . . . . . . . . . . 13 𝑘(𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗))
147593ad2ant1 1080 . . . . . . . . . . . . 13 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → 𝑋 ∈ Fin)
148 volicore 40558 . . . . . . . . . . . . . . . 16 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
14940, 41, 148syl2anc 692 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
150149recnd 10053 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℂ)
1511503ad2antl1 1221 . . . . . . . . . . . . 13 (((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) ∧ 𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℂ)
152 simp2 1060 . . . . . . . . . . . . 13 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → 𝑗𝑋)
15353, 54oveq12d 6653 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑗 → ((𝐴𝑘)[,)(𝐵𝑘)) = ((𝐴𝑗)[,)(𝐵𝑗)))
154153fveq2d 6182 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (vol‘((𝐴𝑗)[,)(𝐵𝑗))))
155154adantl 482 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) ∧ 𝑘 = 𝑗) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (vol‘((𝐴𝑗)[,)(𝐵𝑗))))
1562ffvelrnda 6345 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝑋) → (𝐴𝑗) ∈ ℝ)
1577ffvelrnda 6345 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝑋) → (𝐵𝑗) ∈ ℝ)
158 volico 39963 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑗) ∈ ℝ ∧ (𝐵𝑗) ∈ ℝ) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = if((𝐴𝑗) < (𝐵𝑗), ((𝐵𝑗) − (𝐴𝑗)), 0))
159156, 157, 158syl2anc 692 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗𝑋) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = if((𝐴𝑗) < (𝐵𝑗), ((𝐵𝑗) − (𝐴𝑗)), 0))
1601593adant3 1079 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = if((𝐴𝑗) < (𝐵𝑗), ((𝐵𝑗) − (𝐴𝑗)), 0))
161 simp3 1061 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → (𝐵𝑗) ≤ (𝐴𝑗))
162157, 156lenltd 10168 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗𝑋) → ((𝐵𝑗) ≤ (𝐴𝑗) ↔ ¬ (𝐴𝑗) < (𝐵𝑗)))
1631623adant3 1079 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → ((𝐵𝑗) ≤ (𝐴𝑗) ↔ ¬ (𝐴𝑗) < (𝐵𝑗)))
164161, 163mpbid 222 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → ¬ (𝐴𝑗) < (𝐵𝑗))
165164iffalsed 4088 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → if((𝐴𝑗) < (𝐵𝑗), ((𝐵𝑗) − (𝐴𝑗)), 0) = 0)
166160, 165eqtrd 2654 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = 0)
167166adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) ∧ 𝑘 = 𝑗) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = 0)
168155, 167eqtrd 2654 . . . . . . . . . . . . 13 (((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) ∧ 𝑘 = 𝑗) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)
169146, 147, 151, 152, 168fprodeq0g 14706 . . . . . . . . . . . 12 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)
170145, 169chvarv 2261 . . . . . . . . . . 11 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)
171140, 170eqtrd 2654 . . . . . . . . . 10 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → (𝐴(𝐿𝑋)𝐵) = 0)
172120, 136, 1713eqtr4d 2664 . . . . . . . . 9 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
1731723exp 1262 . . . . . . . 8 (𝜑 → (𝑘𝑋 → ((𝐵𝑘) ≤ (𝐴𝑘) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))))
174173adantr 481 . . . . . . 7 ((𝜑𝑋 ≠ ∅) → (𝑘𝑋 → ((𝐵𝑘) ≤ (𝐴𝑘) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))))
17537, 117, 174rexlimd 3022 . . . . . 6 ((𝜑𝑋 ≠ ∅) → (∃𝑘𝑋 (𝐵𝑘) ≤ (𝐴𝑘) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵)))
176175imp 445 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ ∃𝑘𝑋 (𝐵𝑘) ≤ (𝐴𝑘)) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
177111, 176syldan 487 . . . 4 (((𝜑𝑋 ≠ ∅) ∧ ¬ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
17897, 177pm2.61dan 831 . . 3 ((𝜑𝑋 ≠ ∅) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
17936, 178syldan 487 . 2 ((𝜑 ∧ ¬ 𝑋 = ∅) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
18034, 179pm2.61dan 831 1 (𝜑 → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1481  wcel 1988  wne 2791  wral 2909  wrex 2910  wss 3567  c0 3907  ifcif 4077   class class class wbr 4644  cmpt 4720  dom cdm 5104  wf 5872  cfv 5876  (class class class)co 6635  cmpt2 6637  𝑚 cmap 7842  Xcixp 7893  Fincfn 7940  cc 9919  cr 9920  0cc0 9921  1c1 9922   + caddc 9924  *cxr 10058   < clt 10059  cle 10060  cmin 10251   / cdiv 10669  cn 11005  (,)cioo 12160  [,)cico 12162  cprod 14616  volcvol 23213  volncvoln 40515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523  ax-cc 9242  ax-ac2 9270  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999  ax-addf 10000  ax-mulf 10001
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-fal 1487  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-iin 4514  df-disj 4612  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-of 6882  df-om 7051  df-1st 7153  df-2nd 7154  df-supp 7281  df-tpos 7337  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-2o 7546  df-oadd 7549  df-omul 7550  df-er 7727  df-map 7844  df-pm 7845  df-ixp 7894  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-fsupp 8261  df-fi 8302  df-sup 8333  df-inf 8334  df-oi 8400  df-card 8750  df-acn 8753  df-ac 8924  df-cda 8975  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-4 11066  df-5 11067  df-6 11068  df-7 11069  df-8 11070  df-9 11071  df-n0 11278  df-z 11363  df-dec 11479  df-uz 11673  df-q 11774  df-rp 11818  df-xneg 11931  df-xadd 11932  df-xmul 11933  df-ioo 12164  df-ico 12166  df-icc 12167  df-fz 12312  df-fzo 12450  df-fl 12576  df-seq 12785  df-exp 12844  df-hash 13101  df-cj 13820  df-re 13821  df-im 13822  df-sqrt 13956  df-abs 13957  df-clim 14200  df-rlim 14201  df-sum 14398  df-prod 14617  df-struct 15840  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-ress 15846  df-plusg 15935  df-mulr 15936  df-starv 15937  df-sca 15938  df-vsca 15939  df-ip 15940  df-tset 15941  df-ple 15942  df-ds 15945  df-unif 15946  df-hom 15947  df-cco 15948  df-rest 16064  df-topn 16065  df-0g 16083  df-gsum 16084  df-topgen 16085  df-pt 16086  df-prds 16089  df-pws 16091  df-xrs 16143  df-qtop 16148  df-imas 16149  df-xps 16151  df-mre 16227  df-mrc 16228  df-acs 16230  df-mgm 17223  df-sgrp 17265  df-mnd 17276  df-mhm 17316  df-submnd 17317  df-grp 17406  df-minusg 17407  df-sbg 17408  df-mulg 17522  df-subg 17572  df-ghm 17639  df-cntz 17731  df-cmn 18176  df-abl 18177  df-mgp 18471  df-ur 18483  df-ring 18530  df-cring 18531  df-oppr 18604  df-dvdsr 18622  df-unit 18623  df-invr 18653  df-dvr 18664  df-rnghom 18696  df-drng 18730  df-field 18731  df-subrg 18759  df-abv 18798  df-staf 18826  df-srng 18827  df-lmod 18846  df-lss 18914  df-lmhm 19003  df-lvec 19084  df-sra 19153  df-rgmod 19154  df-psmet 19719  df-xmet 19720  df-met 19721  df-bl 19722  df-mopn 19723  df-cnfld 19728  df-refld 19932  df-phl 19952  df-dsmm 20057  df-frlm 20072  df-top 20680  df-topon 20697  df-topsp 20718  df-bases 20731  df-cn 21012  df-cnp 21013  df-cmp 21171  df-tx 21346  df-hmeo 21539  df-xms 22106  df-ms 22107  df-tms 22108  df-nm 22368  df-ngp 22369  df-tng 22370  df-nrg 22371  df-nlm 22372  df-cncf 22662  df-clm 22844  df-cph 22949  df-tch 22950  df-rrx 23154  df-ovol 23214  df-vol 23215  df-salg 40292  df-sumge0 40343  df-mea 40430  df-ome 40467  df-caragen 40469  df-ovoln 40514  df-voln 40516
This theorem is referenced by:  vonn0ioo  40664
  Copyright terms: Public domain W3C validator