Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonsn Structured version   Visualization version   GIF version

Theorem vonsn 41226
Description: The n-dimensional Lebesgue measure of a singleton is zero. This is the first statement in Proposition 115G (e) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
vonsn.1 (𝜑𝑋 ∈ Fin)
vonsn.2 (𝜑𝐴 ∈ (ℝ ↑𝑚 𝑋))
Assertion
Ref Expression
vonsn (𝜑 → ((voln‘𝑋)‘{𝐴}) = 0)

Proof of Theorem vonsn
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6229 . . . . 5 (𝑋 = ∅ → (voln‘𝑋) = (voln‘∅))
21fveq1d 6231 . . . 4 (𝑋 = ∅ → ((voln‘𝑋)‘{𝐴}) = ((voln‘∅)‘{𝐴}))
32adantl 481 . . 3 ((𝜑𝑋 = ∅) → ((voln‘𝑋)‘{𝐴}) = ((voln‘∅)‘{𝐴}))
4 0fin 8229 . . . . . 6 ∅ ∈ Fin
54a1i 11 . . . . 5 ((𝜑𝑋 = ∅) → ∅ ∈ Fin)
6 vonsn.2 . . . . . . 7 (𝜑𝐴 ∈ (ℝ ↑𝑚 𝑋))
76adantr 480 . . . . . 6 ((𝜑𝑋 = ∅) → 𝐴 ∈ (ℝ ↑𝑚 𝑋))
8 oveq2 6698 . . . . . . 7 (𝑋 = ∅ → (ℝ ↑𝑚 𝑋) = (ℝ ↑𝑚 ∅))
98adantl 481 . . . . . 6 ((𝜑𝑋 = ∅) → (ℝ ↑𝑚 𝑋) = (ℝ ↑𝑚 ∅))
107, 9eleqtrd 2732 . . . . 5 ((𝜑𝑋 = ∅) → 𝐴 ∈ (ℝ ↑𝑚 ∅))
115, 10snvonmbl 41221 . . . 4 ((𝜑𝑋 = ∅) → {𝐴} ∈ dom (voln‘∅))
1211von0val 41206 . . 3 ((𝜑𝑋 = ∅) → ((voln‘∅)‘{𝐴}) = 0)
133, 12eqtrd 2685 . 2 ((𝜑𝑋 = ∅) → ((voln‘𝑋)‘{𝐴}) = 0)
14 neqne 2831 . . . 4 𝑋 = ∅ → 𝑋 ≠ ∅)
1514adantl 481 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
166rrxsnicc 40838 . . . . . . 7 (𝜑X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) = {𝐴})
1716eqcomd 2657 . . . . . 6 (𝜑 → {𝐴} = X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)))
1817fveq2d 6233 . . . . 5 (𝜑 → ((voln‘𝑋)‘{𝐴}) = ((voln‘𝑋)‘X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))))
1918adantr 480 . . . 4 ((𝜑𝑋 ≠ ∅) → ((voln‘𝑋)‘{𝐴}) = ((voln‘𝑋)‘X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))))
20 vonsn.1 . . . . . 6 (𝜑𝑋 ∈ Fin)
2120adantr 480 . . . . 5 ((𝜑𝑋 ≠ ∅) → 𝑋 ∈ Fin)
22 simpr 476 . . . . 5 ((𝜑𝑋 ≠ ∅) → 𝑋 ≠ ∅)
23 elmapi 7921 . . . . . . 7 (𝐴 ∈ (ℝ ↑𝑚 𝑋) → 𝐴:𝑋⟶ℝ)
246, 23syl 17 . . . . . 6 (𝜑𝐴:𝑋⟶ℝ)
2524adantr 480 . . . . 5 ((𝜑𝑋 ≠ ∅) → 𝐴:𝑋⟶ℝ)
26 eqid 2651 . . . . 5 X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) = X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))
2721, 22, 25, 25, 26vonn0icc 41223 . . . 4 ((𝜑𝑋 ≠ ∅) → ((voln‘𝑋)‘X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,](𝐴𝑘))))
2824ffvelrnda 6399 . . . . . . . . . . 11 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
2928rexrd 10127 . . . . . . . . . 10 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ*)
30 iccid 12258 . . . . . . . . . 10 ((𝐴𝑘) ∈ ℝ* → ((𝐴𝑘)[,](𝐴𝑘)) = {(𝐴𝑘)})
3129, 30syl 17 . . . . . . . . 9 ((𝜑𝑘𝑋) → ((𝐴𝑘)[,](𝐴𝑘)) = {(𝐴𝑘)})
3231fveq2d 6233 . . . . . . . 8 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,](𝐴𝑘))) = (vol‘{(𝐴𝑘)}))
33 volsn 40501 . . . . . . . . 9 ((𝐴𝑘) ∈ ℝ → (vol‘{(𝐴𝑘)}) = 0)
3428, 33syl 17 . . . . . . . 8 ((𝜑𝑘𝑋) → (vol‘{(𝐴𝑘)}) = 0)
3532, 34eqtrd 2685 . . . . . . 7 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,](𝐴𝑘))) = 0)
3635prodeq2dv 14697 . . . . . 6 (𝜑 → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,](𝐴𝑘))) = ∏𝑘𝑋 0)
3736adantr 480 . . . . 5 ((𝜑𝑋 ≠ ∅) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,](𝐴𝑘))) = ∏𝑘𝑋 0)
38 0cnd 10071 . . . . . . 7 (𝜑 → 0 ∈ ℂ)
39 fprodconst 14752 . . . . . . 7 ((𝑋 ∈ Fin ∧ 0 ∈ ℂ) → ∏𝑘𝑋 0 = (0↑(#‘𝑋)))
4020, 38, 39syl2anc 694 . . . . . 6 (𝜑 → ∏𝑘𝑋 0 = (0↑(#‘𝑋)))
4140adantr 480 . . . . 5 ((𝜑𝑋 ≠ ∅) → ∏𝑘𝑋 0 = (0↑(#‘𝑋)))
42 hashnncl 13195 . . . . . . . . 9 (𝑋 ∈ Fin → ((#‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
4320, 42syl 17 . . . . . . . 8 (𝜑 → ((#‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
4443adantr 480 . . . . . . 7 ((𝜑𝑋 ≠ ∅) → ((#‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
4522, 44mpbird 247 . . . . . 6 ((𝜑𝑋 ≠ ∅) → (#‘𝑋) ∈ ℕ)
46 0exp 12935 . . . . . 6 ((#‘𝑋) ∈ ℕ → (0↑(#‘𝑋)) = 0)
4745, 46syl 17 . . . . 5 ((𝜑𝑋 ≠ ∅) → (0↑(#‘𝑋)) = 0)
4837, 41, 473eqtrd 2689 . . . 4 ((𝜑𝑋 ≠ ∅) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,](𝐴𝑘))) = 0)
4919, 27, 483eqtrd 2689 . . 3 ((𝜑𝑋 ≠ ∅) → ((voln‘𝑋)‘{𝐴}) = 0)
5015, 49syldan 486 . 2 ((𝜑 ∧ ¬ 𝑋 = ∅) → ((voln‘𝑋)‘{𝐴}) = 0)
5113, 50pm2.61dan 849 1 (𝜑 → ((voln‘𝑋)‘{𝐴}) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wne 2823  c0 3948  {csn 4210  wf 5922  cfv 5926  (class class class)co 6690  𝑚 cmap 7899  Xcixp 7950  Fincfn 7997  cc 9972  cr 9973  0cc0 9974  *cxr 10111  cn 11058  [,]cicc 12216  cexp 12900  #chash 13157  cprod 14679  volcvol 23278  volncvoln 41073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cc 9295  ax-ac2 9323  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-disj 4653  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-tpos 7397  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-omul 7610  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-acn 8806  df-ac 8977  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-rlim 14264  df-sum 14461  df-prod 14680  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-pws 16157  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mhm 17382  df-submnd 17383  df-grp 17472  df-minusg 17473  df-sbg 17474  df-mulg 17588  df-subg 17638  df-ghm 17705  df-cntz 17796  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-ring 18595  df-cring 18596  df-oppr 18669  df-dvdsr 18687  df-unit 18688  df-invr 18718  df-dvr 18729  df-rnghom 18763  df-drng 18797  df-field 18798  df-subrg 18826  df-abv 18865  df-staf 18893  df-srng 18894  df-lmod 18913  df-lss 18981  df-lmhm 19070  df-lvec 19151  df-sra 19220  df-rgmod 19221  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-cnfld 19795  df-refld 19999  df-phl 20019  df-dsmm 20124  df-frlm 20139  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cn 21079  df-cnp 21080  df-cmp 21238  df-tx 21413  df-hmeo 21606  df-xms 22172  df-ms 22173  df-tms 22174  df-nm 22434  df-ngp 22435  df-tng 22436  df-nrg 22437  df-nlm 22438  df-cncf 22728  df-clm 22909  df-cph 23014  df-tch 23015  df-rrx 23219  df-ovol 23279  df-vol 23280  df-salg 40847  df-sumge0 40898  df-mea 40985  df-ome 41025  df-caragen 41027  df-ovoln 41072  df-voln 41074
This theorem is referenced by:  vonct  41228
  Copyright terms: Public domain W3C validator