Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonvolmbl Structured version   Visualization version   GIF version

Theorem vonvolmbl 42820
Description: A subset of Real numbers is Lebesgue measurable if and only if its corresponding 1-dimensional set is measurable w.r.t. the 1-dimensional Lebesgue measure. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
vonvolmbl.a (𝜑𝐴𝑉)
vonvolmbl.b (𝜑𝐵 ⊆ ℝ)
Assertion
Ref Expression
vonvolmbl (𝜑 → ((𝐵m {𝐴}) ∈ dom (voln‘{𝐴}) ↔ 𝐵 ∈ dom vol))

Proof of Theorem vonvolmbl
Dummy variables 𝑓 𝑥 𝑦 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3495 . . . . . . . . . . . . . 14 𝑦 ∈ V
21a1i 11 . . . . . . . . . . . . 13 (𝜑𝑦 ∈ V)
3 reex 10616 . . . . . . . . . . . . . . 15 ℝ ∈ V
43a1i 11 . . . . . . . . . . . . . 14 (𝜑 → ℝ ∈ V)
5 vonvolmbl.b . . . . . . . . . . . . . 14 (𝜑𝐵 ⊆ ℝ)
64, 5ssexd 5219 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ V)
7 snfi 8582 . . . . . . . . . . . . . . 15 {𝐴} ∈ Fin
87a1i 11 . . . . . . . . . . . . . 14 (𝜑 → {𝐴} ∈ Fin)
98elexd 3512 . . . . . . . . . . . . 13 (𝜑 → {𝐴} ∈ V)
102, 6, 9inmap 41348 . . . . . . . . . . . 12 (𝜑 → ((𝑦m {𝐴}) ∩ (𝐵m {𝐴})) = ((𝑦𝐵) ↑m {𝐴}))
1110eqcomd 2824 . . . . . . . . . . 11 (𝜑 → ((𝑦𝐵) ↑m {𝐴}) = ((𝑦m {𝐴}) ∩ (𝐵m {𝐴})))
1211fveq2d 6667 . . . . . . . . . 10 (𝜑 → ((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴})) = ((voln*‘{𝐴})‘((𝑦m {𝐴}) ∩ (𝐵m {𝐴}))))
13 vonvolmbl.a . . . . . . . . . . . . 13 (𝜑𝐴𝑉)
142, 6, 13difmapsn 41351 . . . . . . . . . . . 12 (𝜑 → ((𝑦m {𝐴}) ∖ (𝐵m {𝐴})) = ((𝑦𝐵) ↑m {𝐴}))
1514eqcomd 2824 . . . . . . . . . . 11 (𝜑 → ((𝑦𝐵) ↑m {𝐴}) = ((𝑦m {𝐴}) ∖ (𝐵m {𝐴})))
1615fveq2d 6667 . . . . . . . . . 10 (𝜑 → ((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴})) = ((voln*‘{𝐴})‘((𝑦m {𝐴}) ∖ (𝐵m {𝐴}))))
1712, 16oveq12d 7163 . . . . . . . . 9 (𝜑 → (((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴})) +𝑒 ((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴}))) = (((voln*‘{𝐴})‘((𝑦m {𝐴}) ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘((𝑦m {𝐴}) ∖ (𝐵m {𝐴})))))
1817ad2antrr 722 . . . . . . . 8 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → (((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴})) +𝑒 ((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴}))) = (((voln*‘{𝐴})‘((𝑦m {𝐴}) ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘((𝑦m {𝐴}) ∖ (𝐵m {𝐴})))))
19 ovexd 7180 . . . . . . . . . . . 12 (𝑦 ∈ 𝒫 ℝ → (𝑦m {𝐴}) ∈ V)
203a1i 11 . . . . . . . . . . . . 13 (𝑦 ∈ 𝒫 ℝ → ℝ ∈ V)
21 elpwi 4547 . . . . . . . . . . . . 13 (𝑦 ∈ 𝒫 ℝ → 𝑦 ⊆ ℝ)
22 mapss 8441 . . . . . . . . . . . . 13 ((ℝ ∈ V ∧ 𝑦 ⊆ ℝ) → (𝑦m {𝐴}) ⊆ (ℝ ↑m {𝐴}))
2320, 21, 22syl2anc 584 . . . . . . . . . . . 12 (𝑦 ∈ 𝒫 ℝ → (𝑦m {𝐴}) ⊆ (ℝ ↑m {𝐴}))
2419, 23elpwd 4546 . . . . . . . . . . 11 (𝑦 ∈ 𝒫 ℝ → (𝑦m {𝐴}) ∈ 𝒫 (ℝ ↑m {𝐴}))
2524adantl 482 . . . . . . . . . 10 ((∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥) ∧ 𝑦 ∈ 𝒫 ℝ) → (𝑦m {𝐴}) ∈ 𝒫 (ℝ ↑m {𝐴}))
26 simpl 483 . . . . . . . . . 10 ((∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥) ∧ 𝑦 ∈ 𝒫 ℝ) → ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥))
27 ineq1 4178 . . . . . . . . . . . . . 14 (𝑥 = (𝑦m {𝐴}) → (𝑥 ∩ (𝐵m {𝐴})) = ((𝑦m {𝐴}) ∩ (𝐵m {𝐴})))
2827fveq2d 6667 . . . . . . . . . . . . 13 (𝑥 = (𝑦m {𝐴}) → ((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) = ((voln*‘{𝐴})‘((𝑦m {𝐴}) ∩ (𝐵m {𝐴}))))
29 difeq1 4089 . . . . . . . . . . . . . 14 (𝑥 = (𝑦m {𝐴}) → (𝑥 ∖ (𝐵m {𝐴})) = ((𝑦m {𝐴}) ∖ (𝐵m {𝐴})))
3029fveq2d 6667 . . . . . . . . . . . . 13 (𝑥 = (𝑦m {𝐴}) → ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴}))) = ((voln*‘{𝐴})‘((𝑦m {𝐴}) ∖ (𝐵m {𝐴}))))
3128, 30oveq12d 7163 . . . . . . . . . . . 12 (𝑥 = (𝑦m {𝐴}) → (((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = (((voln*‘{𝐴})‘((𝑦m {𝐴}) ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘((𝑦m {𝐴}) ∖ (𝐵m {𝐴})))))
32 fveq2 6663 . . . . . . . . . . . 12 (𝑥 = (𝑦m {𝐴}) → ((voln*‘{𝐴})‘𝑥) = ((voln*‘{𝐴})‘(𝑦m {𝐴})))
3331, 32eqeq12d 2834 . . . . . . . . . . 11 (𝑥 = (𝑦m {𝐴}) → ((((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥) ↔ (((voln*‘{𝐴})‘((𝑦m {𝐴}) ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘((𝑦m {𝐴}) ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘(𝑦m {𝐴}))))
3433rspcva 3618 . . . . . . . . . 10 (((𝑦m {𝐴}) ∈ 𝒫 (ℝ ↑m {𝐴}) ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) → (((voln*‘{𝐴})‘((𝑦m {𝐴}) ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘((𝑦m {𝐴}) ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘(𝑦m {𝐴})))
3525, 26, 34syl2anc 584 . . . . . . . . 9 ((∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥) ∧ 𝑦 ∈ 𝒫 ℝ) → (((voln*‘{𝐴})‘((𝑦m {𝐴}) ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘((𝑦m {𝐴}) ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘(𝑦m {𝐴})))
3635adantll 710 . . . . . . . 8 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → (((voln*‘{𝐴})‘((𝑦m {𝐴}) ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘((𝑦m {𝐴}) ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘(𝑦m {𝐴})))
37 eqidd 2819 . . . . . . . 8 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → ((voln*‘{𝐴})‘(𝑦m {𝐴})) = ((voln*‘{𝐴})‘(𝑦m {𝐴})))
3818, 36, 373eqtrd 2857 . . . . . . 7 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → (((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴})) +𝑒 ((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴}))) = ((voln*‘{𝐴})‘(𝑦m {𝐴})))
3938eqcomd 2824 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → ((voln*‘{𝐴})‘(𝑦m {𝐴})) = (((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴})) +𝑒 ((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴}))))
4013adantr 481 . . . . . . . 8 ((𝜑𝑦 ∈ 𝒫 ℝ) → 𝐴𝑉)
4121adantl 482 . . . . . . . 8 ((𝜑𝑦 ∈ 𝒫 ℝ) → 𝑦 ⊆ ℝ)
4240, 41ovnovol 42818 . . . . . . 7 ((𝜑𝑦 ∈ 𝒫 ℝ) → ((voln*‘{𝐴})‘(𝑦m {𝐴})) = (vol*‘𝑦))
4342adantlr 711 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → ((voln*‘{𝐴})‘(𝑦m {𝐴})) = (vol*‘𝑦))
4441ssinss1d 41187 . . . . . . . . 9 ((𝜑𝑦 ∈ 𝒫 ℝ) → (𝑦𝐵) ⊆ ℝ)
4540, 44ovnovol 42818 . . . . . . . 8 ((𝜑𝑦 ∈ 𝒫 ℝ) → ((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴})) = (vol*‘(𝑦𝐵)))
4641ssdifssd 4116 . . . . . . . . 9 ((𝜑𝑦 ∈ 𝒫 ℝ) → (𝑦𝐵) ⊆ ℝ)
4740, 46ovnovol 42818 . . . . . . . 8 ((𝜑𝑦 ∈ 𝒫 ℝ) → ((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴})) = (vol*‘(𝑦𝐵)))
4845, 47oveq12d 7163 . . . . . . 7 ((𝜑𝑦 ∈ 𝒫 ℝ) → (((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴})) +𝑒 ((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴}))) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))))
4948adantlr 711 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → (((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴})) +𝑒 ((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴}))) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))))
5039, 43, 493eqtr3d 2861 . . . . 5 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → (vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))))
5150ralrimiva 3179 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) → ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))))
5251ex 413 . . 3 (𝜑 → (∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥) → ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))))
5313ad2antrr 722 . . . . . 6 (((𝜑 ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))) ∧ 𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})) → 𝐴𝑉)
545ad2antrr 722 . . . . . 6 (((𝜑 ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))) ∧ 𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})) → 𝐵 ⊆ ℝ)
55 simplr 765 . . . . . 6 (((𝜑 ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))) ∧ 𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})) → ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))))
56 elpwi 4547 . . . . . . 7 (𝑥 ∈ 𝒫 (ℝ ↑m {𝐴}) → 𝑥 ⊆ (ℝ ↑m {𝐴}))
5756adantl 482 . . . . . 6 (((𝜑 ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))) ∧ 𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})) → 𝑥 ⊆ (ℝ ↑m {𝐴}))
58 rneq 5799 . . . . . . 7 (𝑔 = 𝑓 → ran 𝑔 = ran 𝑓)
5958cbviunv 4956 . . . . . 6 𝑔𝑥 ran 𝑔 = 𝑓𝑥 ran 𝑓
6053, 54, 55, 57, 59vonvolmbllem 42819 . . . . 5 (((𝜑 ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))) ∧ 𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})) → (((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥))
6160ralrimiva 3179 . . . 4 ((𝜑 ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))) → ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥))
6261ex 413 . . 3 (𝜑 → (∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))) → ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)))
6352, 62impbid 213 . 2 (𝜑 → (∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥) ↔ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))))
64 mapss 8441 . . . 4 ((ℝ ∈ V ∧ 𝐵 ⊆ ℝ) → (𝐵m {𝐴}) ⊆ (ℝ ↑m {𝐴}))
654, 5, 64syl2anc 584 . . 3 (𝜑 → (𝐵m {𝐴}) ⊆ (ℝ ↑m {𝐴}))
668isvonmbl 42797 . . 3 (𝜑 → ((𝐵m {𝐴}) ∈ dom (voln‘{𝐴}) ↔ ((𝐵m {𝐴}) ⊆ (ℝ ↑m {𝐴}) ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥))))
6765, 66mpbirand 703 . 2 (𝜑 → ((𝐵m {𝐴}) ∈ dom (voln‘{𝐴}) ↔ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)))
68 ismbl4 42155 . . . 4 (𝐵 ∈ dom vol ↔ (𝐵 ⊆ ℝ ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))))
6968a1i 11 . . 3 (𝜑 → (𝐵 ∈ dom vol ↔ (𝐵 ⊆ ℝ ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))))))
705, 69mpbirand 703 . 2 (𝜑 → (𝐵 ∈ dom vol ↔ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))))
7163, 67, 703bitr4d 312 1 (𝜑 → ((𝐵m {𝐴}) ∈ dom (voln‘{𝐴}) ↔ 𝐵 ∈ dom vol))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wral 3135  Vcvv 3492  cdif 3930  cin 3932  wss 3933  𝒫 cpw 4535  {csn 4557   ciun 4910  dom cdm 5548  ran crn 5549  cfv 6348  (class class class)co 7145  m cmap 8395  Fincfn 8497  cr 10524   +𝑒 cxad 12493  vol*covol 23990  volcvol 23991  voln*covoln 42695  volncvoln 42697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cc 9845  ax-ac2 9873  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-disj 5023  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-tpos 7881  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-pm 8398  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-dju 9318  df-card 9356  df-acn 9359  df-ac 9530  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12881  df-fzo 13022  df-fl 13150  df-seq 13358  df-exp 13418  df-hash 13679  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-clim 14833  df-rlim 14834  df-sum 15031  df-prod 15248  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-rest 16684  df-0g 16703  df-topgen 16705  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-grp 18044  df-minusg 18045  df-subg 18214  df-cmn 18837  df-abl 18838  df-mgp 19169  df-ur 19181  df-ring 19228  df-cring 19229  df-oppr 19302  df-dvdsr 19320  df-unit 19321  df-invr 19351  df-dvr 19362  df-drng 19433  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-cnfld 20474  df-top 21430  df-topon 21447  df-bases 21482  df-cmp 21923  df-ovol 23992  df-vol 23993  df-sumge0 42522  df-ome 42649  df-caragen 42651  df-ovoln 42696  df-voln 42698
This theorem is referenced by:  vonvol  42821  vonvolmbl2  42822  vonvol2  42823
  Copyright terms: Public domain W3C validator