Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonvolmbl Structured version   Visualization version   GIF version

Theorem vonvolmbl 39348
Description: A subset of Real numbers is Lebesgue measurable if and only if its corresponding 1-dimensional set is measurable w.r.t. the 1-dimensional Lebesgue measure. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
vonvolmbl.a (𝜑𝐴𝑉)
vonvolmbl.b (𝜑𝐵 ⊆ ℝ)
Assertion
Ref Expression
vonvolmbl (𝜑 → ((𝐵𝑚 {𝐴}) ∈ dom (voln‘{𝐴}) ↔ 𝐵 ∈ dom vol))

Proof of Theorem vonvolmbl
Dummy variables 𝑓 𝑥 𝑦 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3175 . . . . . . . . . . . . . 14 𝑦 ∈ V
21a1i 11 . . . . . . . . . . . . 13 (𝜑𝑦 ∈ V)
3 reex 9883 . . . . . . . . . . . . . . 15 ℝ ∈ V
43a1i 11 . . . . . . . . . . . . . 14 (𝜑 → ℝ ∈ V)
5 vonvolmbl.b . . . . . . . . . . . . . 14 (𝜑𝐵 ⊆ ℝ)
64, 5ssexd 4728 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ V)
7 snfi 7900 . . . . . . . . . . . . . . 15 {𝐴} ∈ Fin
87a1i 11 . . . . . . . . . . . . . 14 (𝜑 → {𝐴} ∈ Fin)
98elexd 3186 . . . . . . . . . . . . 13 (𝜑 → {𝐴} ∈ V)
102, 6, 9inmap 38192 . . . . . . . . . . . 12 (𝜑 → ((𝑦𝑚 {𝐴}) ∩ (𝐵𝑚 {𝐴})) = ((𝑦𝐵) ↑𝑚 {𝐴}))
1110eqcomd 2615 . . . . . . . . . . 11 (𝜑 → ((𝑦𝐵) ↑𝑚 {𝐴}) = ((𝑦𝑚 {𝐴}) ∩ (𝐵𝑚 {𝐴})))
1211fveq2d 6092 . . . . . . . . . 10 (𝜑 → ((voln*‘{𝐴})‘((𝑦𝐵) ↑𝑚 {𝐴})) = ((voln*‘{𝐴})‘((𝑦𝑚 {𝐴}) ∩ (𝐵𝑚 {𝐴}))))
13 vonvolmbl.a . . . . . . . . . . . . 13 (𝜑𝐴𝑉)
142, 6, 13difmapsn 38195 . . . . . . . . . . . 12 (𝜑 → ((𝑦𝑚 {𝐴}) ∖ (𝐵𝑚 {𝐴})) = ((𝑦𝐵) ↑𝑚 {𝐴}))
1514eqcomd 2615 . . . . . . . . . . 11 (𝜑 → ((𝑦𝐵) ↑𝑚 {𝐴}) = ((𝑦𝑚 {𝐴}) ∖ (𝐵𝑚 {𝐴})))
1615fveq2d 6092 . . . . . . . . . 10 (𝜑 → ((voln*‘{𝐴})‘((𝑦𝐵) ↑𝑚 {𝐴})) = ((voln*‘{𝐴})‘((𝑦𝑚 {𝐴}) ∖ (𝐵𝑚 {𝐴}))))
1712, 16oveq12d 6545 . . . . . . . . 9 (𝜑 → (((voln*‘{𝐴})‘((𝑦𝐵) ↑𝑚 {𝐴})) +𝑒 ((voln*‘{𝐴})‘((𝑦𝐵) ↑𝑚 {𝐴}))) = (((voln*‘{𝐴})‘((𝑦𝑚 {𝐴}) ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘((𝑦𝑚 {𝐴}) ∖ (𝐵𝑚 {𝐴})))))
1817ad2antrr 757 . . . . . . . 8 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑𝑚 {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵𝑚 {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → (((voln*‘{𝐴})‘((𝑦𝐵) ↑𝑚 {𝐴})) +𝑒 ((voln*‘{𝐴})‘((𝑦𝐵) ↑𝑚 {𝐴}))) = (((voln*‘{𝐴})‘((𝑦𝑚 {𝐴}) ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘((𝑦𝑚 {𝐴}) ∖ (𝐵𝑚 {𝐴})))))
19 ovex 6555 . . . . . . . . . . . . 13 (𝑦𝑚 {𝐴}) ∈ V
2019a1i 11 . . . . . . . . . . . 12 (𝑦 ∈ 𝒫 ℝ → (𝑦𝑚 {𝐴}) ∈ V)
213a1i 11 . . . . . . . . . . . . 13 (𝑦 ∈ 𝒫 ℝ → ℝ ∈ V)
22 elpwi 4116 . . . . . . . . . . . . 13 (𝑦 ∈ 𝒫 ℝ → 𝑦 ⊆ ℝ)
23 mapss 7763 . . . . . . . . . . . . 13 ((ℝ ∈ V ∧ 𝑦 ⊆ ℝ) → (𝑦𝑚 {𝐴}) ⊆ (ℝ ↑𝑚 {𝐴}))
2421, 22, 23syl2anc 690 . . . . . . . . . . . 12 (𝑦 ∈ 𝒫 ℝ → (𝑦𝑚 {𝐴}) ⊆ (ℝ ↑𝑚 {𝐴}))
2520, 24elpwd 38060 . . . . . . . . . . 11 (𝑦 ∈ 𝒫 ℝ → (𝑦𝑚 {𝐴}) ∈ 𝒫 (ℝ ↑𝑚 {𝐴}))
2625adantl 480 . . . . . . . . . 10 ((∀𝑥 ∈ 𝒫 (ℝ ↑𝑚 {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵𝑚 {𝐴})))) = ((voln*‘{𝐴})‘𝑥) ∧ 𝑦 ∈ 𝒫 ℝ) → (𝑦𝑚 {𝐴}) ∈ 𝒫 (ℝ ↑𝑚 {𝐴}))
27 simpl 471 . . . . . . . . . 10 ((∀𝑥 ∈ 𝒫 (ℝ ↑𝑚 {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵𝑚 {𝐴})))) = ((voln*‘{𝐴})‘𝑥) ∧ 𝑦 ∈ 𝒫 ℝ) → ∀𝑥 ∈ 𝒫 (ℝ ↑𝑚 {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵𝑚 {𝐴})))) = ((voln*‘{𝐴})‘𝑥))
28 ineq1 3768 . . . . . . . . . . . . . 14 (𝑥 = (𝑦𝑚 {𝐴}) → (𝑥 ∩ (𝐵𝑚 {𝐴})) = ((𝑦𝑚 {𝐴}) ∩ (𝐵𝑚 {𝐴})))
2928fveq2d 6092 . . . . . . . . . . . . 13 (𝑥 = (𝑦𝑚 {𝐴}) → ((voln*‘{𝐴})‘(𝑥 ∩ (𝐵𝑚 {𝐴}))) = ((voln*‘{𝐴})‘((𝑦𝑚 {𝐴}) ∩ (𝐵𝑚 {𝐴}))))
30 difeq1 3682 . . . . . . . . . . . . . 14 (𝑥 = (𝑦𝑚 {𝐴}) → (𝑥 ∖ (𝐵𝑚 {𝐴})) = ((𝑦𝑚 {𝐴}) ∖ (𝐵𝑚 {𝐴})))
3130fveq2d 6092 . . . . . . . . . . . . 13 (𝑥 = (𝑦𝑚 {𝐴}) → ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵𝑚 {𝐴}))) = ((voln*‘{𝐴})‘((𝑦𝑚 {𝐴}) ∖ (𝐵𝑚 {𝐴}))))
3229, 31oveq12d 6545 . . . . . . . . . . . 12 (𝑥 = (𝑦𝑚 {𝐴}) → (((voln*‘{𝐴})‘(𝑥 ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵𝑚 {𝐴})))) = (((voln*‘{𝐴})‘((𝑦𝑚 {𝐴}) ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘((𝑦𝑚 {𝐴}) ∖ (𝐵𝑚 {𝐴})))))
33 fveq2 6088 . . . . . . . . . . . 12 (𝑥 = (𝑦𝑚 {𝐴}) → ((voln*‘{𝐴})‘𝑥) = ((voln*‘{𝐴})‘(𝑦𝑚 {𝐴})))
3432, 33eqeq12d 2624 . . . . . . . . . . 11 (𝑥 = (𝑦𝑚 {𝐴}) → ((((voln*‘{𝐴})‘(𝑥 ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵𝑚 {𝐴})))) = ((voln*‘{𝐴})‘𝑥) ↔ (((voln*‘{𝐴})‘((𝑦𝑚 {𝐴}) ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘((𝑦𝑚 {𝐴}) ∖ (𝐵𝑚 {𝐴})))) = ((voln*‘{𝐴})‘(𝑦𝑚 {𝐴}))))
3534rspcva 3279 . . . . . . . . . 10 (((𝑦𝑚 {𝐴}) ∈ 𝒫 (ℝ ↑𝑚 {𝐴}) ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑𝑚 {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵𝑚 {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) → (((voln*‘{𝐴})‘((𝑦𝑚 {𝐴}) ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘((𝑦𝑚 {𝐴}) ∖ (𝐵𝑚 {𝐴})))) = ((voln*‘{𝐴})‘(𝑦𝑚 {𝐴})))
3626, 27, 35syl2anc 690 . . . . . . . . 9 ((∀𝑥 ∈ 𝒫 (ℝ ↑𝑚 {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵𝑚 {𝐴})))) = ((voln*‘{𝐴})‘𝑥) ∧ 𝑦 ∈ 𝒫 ℝ) → (((voln*‘{𝐴})‘((𝑦𝑚 {𝐴}) ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘((𝑦𝑚 {𝐴}) ∖ (𝐵𝑚 {𝐴})))) = ((voln*‘{𝐴})‘(𝑦𝑚 {𝐴})))
3736adantll 745 . . . . . . . 8 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑𝑚 {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵𝑚 {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → (((voln*‘{𝐴})‘((𝑦𝑚 {𝐴}) ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘((𝑦𝑚 {𝐴}) ∖ (𝐵𝑚 {𝐴})))) = ((voln*‘{𝐴})‘(𝑦𝑚 {𝐴})))
38 eqidd 2610 . . . . . . . 8 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑𝑚 {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵𝑚 {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → ((voln*‘{𝐴})‘(𝑦𝑚 {𝐴})) = ((voln*‘{𝐴})‘(𝑦𝑚 {𝐴})))
3918, 37, 383eqtrd 2647 . . . . . . 7 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑𝑚 {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵𝑚 {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → (((voln*‘{𝐴})‘((𝑦𝐵) ↑𝑚 {𝐴})) +𝑒 ((voln*‘{𝐴})‘((𝑦𝐵) ↑𝑚 {𝐴}))) = ((voln*‘{𝐴})‘(𝑦𝑚 {𝐴})))
4039eqcomd 2615 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑𝑚 {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵𝑚 {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → ((voln*‘{𝐴})‘(𝑦𝑚 {𝐴})) = (((voln*‘{𝐴})‘((𝑦𝐵) ↑𝑚 {𝐴})) +𝑒 ((voln*‘{𝐴})‘((𝑦𝐵) ↑𝑚 {𝐴}))))
4113adantr 479 . . . . . . . 8 ((𝜑𝑦 ∈ 𝒫 ℝ) → 𝐴𝑉)
4222adantl 480 . . . . . . . 8 ((𝜑𝑦 ∈ 𝒫 ℝ) → 𝑦 ⊆ ℝ)
4341, 42ovnovol 39346 . . . . . . 7 ((𝜑𝑦 ∈ 𝒫 ℝ) → ((voln*‘{𝐴})‘(𝑦𝑚 {𝐴})) = (vol*‘𝑦))
4443adantlr 746 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑𝑚 {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵𝑚 {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → ((voln*‘{𝐴})‘(𝑦𝑚 {𝐴})) = (vol*‘𝑦))
4542ssinss1d 38035 . . . . . . . . 9 ((𝜑𝑦 ∈ 𝒫 ℝ) → (𝑦𝐵) ⊆ ℝ)
4641, 45ovnovol 39346 . . . . . . . 8 ((𝜑𝑦 ∈ 𝒫 ℝ) → ((voln*‘{𝐴})‘((𝑦𝐵) ↑𝑚 {𝐴})) = (vol*‘(𝑦𝐵)))
4742ssdifssd 3709 . . . . . . . . 9 ((𝜑𝑦 ∈ 𝒫 ℝ) → (𝑦𝐵) ⊆ ℝ)
4841, 47ovnovol 39346 . . . . . . . 8 ((𝜑𝑦 ∈ 𝒫 ℝ) → ((voln*‘{𝐴})‘((𝑦𝐵) ↑𝑚 {𝐴})) = (vol*‘(𝑦𝐵)))
4946, 48oveq12d 6545 . . . . . . 7 ((𝜑𝑦 ∈ 𝒫 ℝ) → (((voln*‘{𝐴})‘((𝑦𝐵) ↑𝑚 {𝐴})) +𝑒 ((voln*‘{𝐴})‘((𝑦𝐵) ↑𝑚 {𝐴}))) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))))
5049adantlr 746 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑𝑚 {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵𝑚 {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → (((voln*‘{𝐴})‘((𝑦𝐵) ↑𝑚 {𝐴})) +𝑒 ((voln*‘{𝐴})‘((𝑦𝐵) ↑𝑚 {𝐴}))) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))))
5140, 44, 503eqtr3d 2651 . . . . 5 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑𝑚 {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵𝑚 {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → (vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))))
5251ralrimiva 2948 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑𝑚 {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵𝑚 {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) → ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))))
5352ex 448 . . 3 (𝜑 → (∀𝑥 ∈ 𝒫 (ℝ ↑𝑚 {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵𝑚 {𝐴})))) = ((voln*‘{𝐴})‘𝑥) → ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))))
5413ad2antrr 757 . . . . . 6 (((𝜑 ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))) ∧ 𝑥 ∈ 𝒫 (ℝ ↑𝑚 {𝐴})) → 𝐴𝑉)
555ad2antrr 757 . . . . . 6 (((𝜑 ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))) ∧ 𝑥 ∈ 𝒫 (ℝ ↑𝑚 {𝐴})) → 𝐵 ⊆ ℝ)
56 simplr 787 . . . . . 6 (((𝜑 ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))) ∧ 𝑥 ∈ 𝒫 (ℝ ↑𝑚 {𝐴})) → ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))))
57 elpwi 4116 . . . . . . 7 (𝑥 ∈ 𝒫 (ℝ ↑𝑚 {𝐴}) → 𝑥 ⊆ (ℝ ↑𝑚 {𝐴}))
5857adantl 480 . . . . . 6 (((𝜑 ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))) ∧ 𝑥 ∈ 𝒫 (ℝ ↑𝑚 {𝐴})) → 𝑥 ⊆ (ℝ ↑𝑚 {𝐴}))
59 rneq 5259 . . . . . . 7 (𝑔 = 𝑓 → ran 𝑔 = ran 𝑓)
6059cbviunv 4489 . . . . . 6 𝑔𝑥 ran 𝑔 = 𝑓𝑥 ran 𝑓
6154, 55, 56, 58, 60vonvolmbllem 39347 . . . . 5 (((𝜑 ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))) ∧ 𝑥 ∈ 𝒫 (ℝ ↑𝑚 {𝐴})) → (((voln*‘{𝐴})‘(𝑥 ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵𝑚 {𝐴})))) = ((voln*‘{𝐴})‘𝑥))
6261ralrimiva 2948 . . . 4 ((𝜑 ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))) → ∀𝑥 ∈ 𝒫 (ℝ ↑𝑚 {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵𝑚 {𝐴})))) = ((voln*‘{𝐴})‘𝑥))
6362ex 448 . . 3 (𝜑 → (∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))) → ∀𝑥 ∈ 𝒫 (ℝ ↑𝑚 {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵𝑚 {𝐴})))) = ((voln*‘{𝐴})‘𝑥)))
6453, 63impbid 200 . 2 (𝜑 → (∀𝑥 ∈ 𝒫 (ℝ ↑𝑚 {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵𝑚 {𝐴})))) = ((voln*‘{𝐴})‘𝑥) ↔ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))))
65 mapss 7763 . . . 4 ((ℝ ∈ V ∧ 𝐵 ⊆ ℝ) → (𝐵𝑚 {𝐴}) ⊆ (ℝ ↑𝑚 {𝐴}))
664, 5, 65syl2anc 690 . . 3 (𝜑 → (𝐵𝑚 {𝐴}) ⊆ (ℝ ↑𝑚 {𝐴}))
678isvonmbl 39325 . . 3 (𝜑 → ((𝐵𝑚 {𝐴}) ∈ dom (voln‘{𝐴}) ↔ ((𝐵𝑚 {𝐴}) ⊆ (ℝ ↑𝑚 {𝐴}) ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑𝑚 {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵𝑚 {𝐴})))) = ((voln*‘{𝐴})‘𝑥))))
6866, 67mpbirand 528 . 2 (𝜑 → ((𝐵𝑚 {𝐴}) ∈ dom (voln‘{𝐴}) ↔ ∀𝑥 ∈ 𝒫 (ℝ ↑𝑚 {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵𝑚 {𝐴})))) = ((voln*‘{𝐴})‘𝑥)))
69 ismbl4 38683 . . . 4 (𝐵 ∈ dom vol ↔ (𝐵 ⊆ ℝ ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))))
7069a1i 11 . . 3 (𝜑 → (𝐵 ∈ dom vol ↔ (𝐵 ⊆ ℝ ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))))))
715, 70mpbirand 528 . 2 (𝜑 → (𝐵 ∈ dom vol ↔ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))))
7264, 68, 713bitr4d 298 1 (𝜑 → ((𝐵𝑚 {𝐴}) ∈ dom (voln‘{𝐴}) ↔ 𝐵 ∈ dom vol))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976  wral 2895  Vcvv 3172  cdif 3536  cin 3538  wss 3539  𝒫 cpw 4107  {csn 4124   ciun 4449  dom cdm 5028  ran crn 5029  cfv 5790  (class class class)co 6527  𝑚 cmap 7721  Fincfn 7818  cr 9791   +𝑒 cxad 11776  vol*covol 22955  volcvol 22956  voln*covoln 39223  volncvoln 39225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-inf2 8398  ax-cc 9117  ax-ac2 9145  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870  ax-addf 9871  ax-mulf 9872
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-disj 4548  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6772  df-om 6935  df-1st 7036  df-2nd 7037  df-tpos 7216  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-2o 7425  df-oadd 7428  df-er 7606  df-map 7723  df-pm 7724  df-ixp 7772  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-fi 8177  df-sup 8208  df-inf 8209  df-oi 8275  df-card 8625  df-acn 8628  df-ac 8799  df-cda 8850  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-4 10928  df-5 10929  df-6 10930  df-7 10931  df-8 10932  df-9 10933  df-n0 11140  df-z 11211  df-dec 11326  df-uz 11520  df-q 11621  df-rp 11665  df-xneg 11778  df-xadd 11779  df-xmul 11780  df-ioo 12006  df-ico 12008  df-icc 12009  df-fz 12153  df-fzo 12290  df-fl 12410  df-seq 12619  df-exp 12678  df-hash 12935  df-cj 13633  df-re 13634  df-im 13635  df-sqrt 13769  df-abs 13770  df-clim 14013  df-rlim 14014  df-sum 14211  df-prod 14421  df-struct 15643  df-ndx 15644  df-slot 15645  df-base 15646  df-sets 15647  df-ress 15648  df-plusg 15727  df-mulr 15728  df-starv 15729  df-tset 15733  df-ple 15734  df-ds 15737  df-unif 15738  df-rest 15852  df-0g 15871  df-topgen 15873  df-mgm 17011  df-sgrp 17053  df-mnd 17064  df-grp 17194  df-minusg 17195  df-subg 17360  df-cmn 17964  df-abl 17965  df-mgp 18259  df-ur 18271  df-ring 18318  df-cring 18319  df-oppr 18392  df-dvdsr 18410  df-unit 18411  df-invr 18441  df-dvr 18452  df-drng 18518  df-psmet 19505  df-xmet 19506  df-met 19507  df-bl 19508  df-mopn 19509  df-cnfld 19514  df-top 20463  df-bases 20464  df-topon 20465  df-cmp 20942  df-ovol 22957  df-vol 22958  df-sumge0 39053  df-ome 39177  df-caragen 39179  df-ovoln 39224  df-voln 39226
This theorem is referenced by:  vonvol  39349  vonvolmbl2  39350  vonvol2  39351
  Copyright terms: Public domain W3C validator