Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonvolmbllem Structured version   Visualization version   GIF version

Theorem vonvolmbllem 42819
Description: If a subset 𝐵 of real numbers is Lebesgue measurable, then its corresponding 1-dimensional set is measurable w.r.t. the n-dimensional Lebesgue measure, (with 𝑛 equal to 1). (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
vonvolmbllem.a (𝜑𝐴𝑉)
vonvolmbllem.b (𝜑𝐵 ⊆ ℝ)
vonvolmbllem.e (𝜑 → ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))))
vonvolmbllem.x (𝜑𝑋 ⊆ (ℝ ↑m {𝐴}))
vonvolmbllem.y 𝑌 = 𝑓𝑋 ran 𝑓
Assertion
Ref Expression
vonvolmbllem (𝜑 → (((voln*‘{𝐴})‘(𝑋 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑋))
Distinct variable groups:   𝐴,𝑓   𝑦,𝐵   𝑓,𝑋   𝑓,𝑌   𝑦,𝑌   𝜑,𝑓
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)   𝐵(𝑓)   𝑉(𝑦,𝑓)   𝑋(𝑦)

Proof of Theorem vonvolmbllem
StepHypRef Expression
1 nfcv 2974 . . . . . . . 8 𝑓𝑌
2 vonvolmbllem.a . . . . . . . 8 (𝜑𝐴𝑉)
3 vonvolmbllem.x . . . . . . . 8 (𝜑𝑋 ⊆ (ℝ ↑m {𝐴}))
4 vonvolmbllem.y . . . . . . . 8 𝑌 = 𝑓𝑋 ran 𝑓
51, 2, 3, 4ssmapsn 41355 . . . . . . 7 (𝜑𝑋 = (𝑌m {𝐴}))
65ineq1d 4185 . . . . . 6 (𝜑 → (𝑋 ∩ (𝐵m {𝐴})) = ((𝑌m {𝐴}) ∩ (𝐵m {𝐴})))
7 reex 10616 . . . . . . . . 9 ℝ ∈ V
87a1i 11 . . . . . . . 8 (𝜑 → ℝ ∈ V)
93sselda 3964 . . . . . . . . . . . . 13 ((𝜑𝑓𝑋) → 𝑓 ∈ (ℝ ↑m {𝐴}))
10 elmapi 8417 . . . . . . . . . . . . 13 (𝑓 ∈ (ℝ ↑m {𝐴}) → 𝑓:{𝐴}⟶ℝ)
119, 10syl 17 . . . . . . . . . . . 12 ((𝜑𝑓𝑋) → 𝑓:{𝐴}⟶ℝ)
1211frnd 6514 . . . . . . . . . . 11 ((𝜑𝑓𝑋) → ran 𝑓 ⊆ ℝ)
1312ralrimiva 3179 . . . . . . . . . 10 (𝜑 → ∀𝑓𝑋 ran 𝑓 ⊆ ℝ)
14 iunss 4960 . . . . . . . . . 10 ( 𝑓𝑋 ran 𝑓 ⊆ ℝ ↔ ∀𝑓𝑋 ran 𝑓 ⊆ ℝ)
1513, 14sylibr 235 . . . . . . . . 9 (𝜑 𝑓𝑋 ran 𝑓 ⊆ ℝ)
164, 15eqsstrid 4012 . . . . . . . 8 (𝜑𝑌 ⊆ ℝ)
178, 16ssexd 5219 . . . . . . 7 (𝜑𝑌 ∈ V)
18 vonvolmbllem.b . . . . . . . 8 (𝜑𝐵 ⊆ ℝ)
198, 18ssexd 5219 . . . . . . 7 (𝜑𝐵 ∈ V)
20 snex 5322 . . . . . . . 8 {𝐴} ∈ V
2120a1i 11 . . . . . . 7 (𝜑 → {𝐴} ∈ V)
2217, 19, 21inmap 41348 . . . . . 6 (𝜑 → ((𝑌m {𝐴}) ∩ (𝐵m {𝐴})) = ((𝑌𝐵) ↑m {𝐴}))
236, 22eqtrd 2853 . . . . 5 (𝜑 → (𝑋 ∩ (𝐵m {𝐴})) = ((𝑌𝐵) ↑m {𝐴}))
2423fveq2d 6667 . . . 4 (𝜑 → ((voln*‘{𝐴})‘(𝑋 ∩ (𝐵m {𝐴}))) = ((voln*‘{𝐴})‘((𝑌𝐵) ↑m {𝐴})))
2516ssinss1d 41187 . . . . 5 (𝜑 → (𝑌𝐵) ⊆ ℝ)
262, 25ovnovol 42818 . . . 4 (𝜑 → ((voln*‘{𝐴})‘((𝑌𝐵) ↑m {𝐴})) = (vol*‘(𝑌𝐵)))
2724, 26eqtrd 2853 . . 3 (𝜑 → ((voln*‘{𝐴})‘(𝑋 ∩ (𝐵m {𝐴}))) = (vol*‘(𝑌𝐵)))
285difeq1d 4095 . . . . . 6 (𝜑 → (𝑋 ∖ (𝐵m {𝐴})) = ((𝑌m {𝐴}) ∖ (𝐵m {𝐴})))
2917, 19, 2difmapsn 41351 . . . . . 6 (𝜑 → ((𝑌m {𝐴}) ∖ (𝐵m {𝐴})) = ((𝑌𝐵) ↑m {𝐴}))
3028, 29eqtrd 2853 . . . . 5 (𝜑 → (𝑋 ∖ (𝐵m {𝐴})) = ((𝑌𝐵) ↑m {𝐴}))
3130fveq2d 6667 . . . 4 (𝜑 → ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵m {𝐴}))) = ((voln*‘{𝐴})‘((𝑌𝐵) ↑m {𝐴})))
3216ssdifssd 4116 . . . . 5 (𝜑 → (𝑌𝐵) ⊆ ℝ)
332, 32ovnovol 42818 . . . 4 (𝜑 → ((voln*‘{𝐴})‘((𝑌𝐵) ↑m {𝐴})) = (vol*‘(𝑌𝐵)))
3431, 33eqtrd 2853 . . 3 (𝜑 → ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵m {𝐴}))) = (vol*‘(𝑌𝐵)))
3527, 34oveq12d 7163 . 2 (𝜑 → (((voln*‘{𝐴})‘(𝑋 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵m {𝐴})))) = ((vol*‘(𝑌𝐵)) +𝑒 (vol*‘(𝑌𝐵))))
365fveq2d 6667 . . 3 (𝜑 → ((voln*‘{𝐴})‘𝑋) = ((voln*‘{𝐴})‘(𝑌m {𝐴})))
372, 16ovnovol 42818 . . 3 (𝜑 → ((voln*‘{𝐴})‘(𝑌m {𝐴})) = (vol*‘𝑌))
3817, 16elpwd 4546 . . . 4 (𝜑𝑌 ∈ 𝒫 ℝ)
39 vonvolmbllem.e . . . 4 (𝜑 → ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))))
40 fveq2 6663 . . . . . 6 (𝑦 = 𝑌 → (vol*‘𝑦) = (vol*‘𝑌))
41 ineq1 4178 . . . . . . . 8 (𝑦 = 𝑌 → (𝑦𝐵) = (𝑌𝐵))
4241fveq2d 6667 . . . . . . 7 (𝑦 = 𝑌 → (vol*‘(𝑦𝐵)) = (vol*‘(𝑌𝐵)))
43 difeq1 4089 . . . . . . . 8 (𝑦 = 𝑌 → (𝑦𝐵) = (𝑌𝐵))
4443fveq2d 6667 . . . . . . 7 (𝑦 = 𝑌 → (vol*‘(𝑦𝐵)) = (vol*‘(𝑌𝐵)))
4542, 44oveq12d 7163 . . . . . 6 (𝑦 = 𝑌 → ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))) = ((vol*‘(𝑌𝐵)) +𝑒 (vol*‘(𝑌𝐵))))
4640, 45eqeq12d 2834 . . . . 5 (𝑦 = 𝑌 → ((vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))) ↔ (vol*‘𝑌) = ((vol*‘(𝑌𝐵)) +𝑒 (vol*‘(𝑌𝐵)))))
4746rspcva 3618 . . . 4 ((𝑌 ∈ 𝒫 ℝ ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))) → (vol*‘𝑌) = ((vol*‘(𝑌𝐵)) +𝑒 (vol*‘(𝑌𝐵))))
4838, 39, 47syl2anc 584 . . 3 (𝜑 → (vol*‘𝑌) = ((vol*‘(𝑌𝐵)) +𝑒 (vol*‘(𝑌𝐵))))
4936, 37, 483eqtrd 2857 . 2 (𝜑 → ((voln*‘{𝐴})‘𝑋) = ((vol*‘(𝑌𝐵)) +𝑒 (vol*‘(𝑌𝐵))))
5035, 49eqtr4d 2856 1 (𝜑 → (((voln*‘{𝐴})‘(𝑋 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  wral 3135  Vcvv 3492  cdif 3930  cin 3932  wss 3933  𝒫 cpw 4535  {csn 4557   ciun 4910  ran crn 5549  wf 6344  cfv 6348  (class class class)co 7145  m cmap 8395  cr 10524   +𝑒 cxad 12493  vol*covol 23990  voln*covoln 42695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-pm 8398  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-dju 9318  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12881  df-fzo 13022  df-fl 13150  df-seq 13358  df-exp 13418  df-hash 13679  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-clim 14833  df-rlim 14834  df-sum 15031  df-prod 15248  df-rest 16684  df-topgen 16705  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-top 21430  df-topon 21447  df-bases 21482  df-cmp 21923  df-ovol 23992  df-vol 23993  df-sumge0 42522  df-ovoln 42696
This theorem is referenced by:  vonvolmbl  42820
  Copyright terms: Public domain W3C validator