MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vsfval Structured version   Visualization version   GIF version

Theorem vsfval 27355
Description: Value of the function for the vector subtraction operation on a normed complex vector space. (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 27-Dec-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
vsfval.2 𝐺 = ( +𝑣𝑈)
vsfval.3 𝑀 = ( −𝑣𝑈)
Assertion
Ref Expression
vsfval 𝑀 = ( /𝑔𝐺)

Proof of Theorem vsfval
Dummy variables 𝑥 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-vs 27321 . . . . 5 𝑣 = ( /𝑔 ∘ +𝑣 )
21fveq1i 6154 . . . 4 ( −𝑣𝑈) = (( /𝑔 ∘ +𝑣 )‘𝑈)
3 fo1st 7140 . . . . . . . 8 1st :V–onto→V
4 fof 6077 . . . . . . . 8 (1st :V–onto→V → 1st :V⟶V)
53, 4ax-mp 5 . . . . . . 7 1st :V⟶V
6 fco 6020 . . . . . . 7 ((1st :V⟶V ∧ 1st :V⟶V) → (1st ∘ 1st ):V⟶V)
75, 5, 6mp2an 707 . . . . . 6 (1st ∘ 1st ):V⟶V
8 df-va 27317 . . . . . . 7 +𝑣 = (1st ∘ 1st )
98feq1i 5998 . . . . . 6 ( +𝑣 :V⟶V ↔ (1st ∘ 1st ):V⟶V)
107, 9mpbir 221 . . . . 5 +𝑣 :V⟶V
11 fvco3 6237 . . . . 5 (( +𝑣 :V⟶V ∧ 𝑈 ∈ V) → (( /𝑔 ∘ +𝑣 )‘𝑈) = ( /𝑔 ‘( +𝑣𝑈)))
1210, 11mpan 705 . . . 4 (𝑈 ∈ V → (( /𝑔 ∘ +𝑣 )‘𝑈) = ( /𝑔 ‘( +𝑣𝑈)))
132, 12syl5eq 2667 . . 3 (𝑈 ∈ V → ( −𝑣𝑈) = ( /𝑔 ‘( +𝑣𝑈)))
14 0ngrp 27232 . . . . . 6 ¬ ∅ ∈ GrpOp
15 vex 3192 . . . . . . . . . 10 𝑔 ∈ V
1615rnex 7054 . . . . . . . . 9 ran 𝑔 ∈ V
1716, 16mpt2ex 7199 . . . . . . . 8 (𝑥 ∈ ran 𝑔, 𝑦 ∈ ran 𝑔 ↦ (𝑥𝑔((inv‘𝑔)‘𝑦))) ∈ V
18 df-gdiv 27217 . . . . . . . 8 /𝑔 = (𝑔 ∈ GrpOp ↦ (𝑥 ∈ ran 𝑔, 𝑦 ∈ ran 𝑔 ↦ (𝑥𝑔((inv‘𝑔)‘𝑦))))
1917, 18dmmpti 5985 . . . . . . 7 dom /𝑔 = GrpOp
2019eleq2i 2690 . . . . . 6 (∅ ∈ dom /𝑔 ↔ ∅ ∈ GrpOp)
2114, 20mtbir 313 . . . . 5 ¬ ∅ ∈ dom /𝑔
22 ndmfv 6180 . . . . 5 (¬ ∅ ∈ dom /𝑔 → ( /𝑔 ‘∅) = ∅)
2321, 22mp1i 13 . . . 4 𝑈 ∈ V → ( /𝑔 ‘∅) = ∅)
24 fvprc 6147 . . . . 5 𝑈 ∈ V → ( +𝑣𝑈) = ∅)
2524fveq2d 6157 . . . 4 𝑈 ∈ V → ( /𝑔 ‘( +𝑣𝑈)) = ( /𝑔 ‘∅))
26 fvprc 6147 . . . 4 𝑈 ∈ V → ( −𝑣𝑈) = ∅)
2723, 25, 263eqtr4rd 2666 . . 3 𝑈 ∈ V → ( −𝑣𝑈) = ( /𝑔 ‘( +𝑣𝑈)))
2813, 27pm2.61i 176 . 2 ( −𝑣𝑈) = ( /𝑔 ‘( +𝑣𝑈))
29 vsfval.3 . 2 𝑀 = ( −𝑣𝑈)
30 vsfval.2 . . 3 𝐺 = ( +𝑣𝑈)
3130fveq2i 6156 . 2 ( /𝑔𝐺) = ( /𝑔 ‘( +𝑣𝑈))
3228, 29, 313eqtr4i 2653 1 𝑀 = ( /𝑔𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1480  wcel 1987  Vcvv 3189  c0 3896  dom cdm 5079  ran crn 5080  ccom 5083  wf 5848  ontowfo 5850  cfv 5852  (class class class)co 6610  cmpt2 6612  1st c1st 7118  GrpOpcgr 27210  invcgn 27212   /𝑔 cgs 27213   +𝑣 cpv 27307  𝑣 cnsb 27311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-1st 7120  df-2nd 7121  df-grpo 27214  df-gdiv 27217  df-va 27317  df-vs 27321
This theorem is referenced by:  nvm  27363  nvmfval  27366  nvnnncan1  27369  nvaddsub  27377
  Copyright terms: Public domain W3C validator