MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtocld Structured version   Visualization version   GIF version

Theorem vtocld 3229
Description: Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
vtocld.1 (𝜑𝐴𝑉)
vtocld.2 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
vtocld.3 (𝜑𝜓)
Assertion
Ref Expression
vtocld (𝜑𝜒)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝑉(𝑥)

Proof of Theorem vtocld
StepHypRef Expression
1 vtocld.1 . 2 (𝜑𝐴𝑉)
2 vtocld.2 . 2 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
3 vtocld.3 . 2 (𝜑𝜓)
4 nfv 1829 . 2 𝑥𝜑
5 nfcvd 2751 . 2 (𝜑𝑥𝐴)
6 nfvd 1830 . 2 (𝜑 → Ⅎ𝑥𝜒)
71, 2, 3, 4, 5, 6vtocldf 3228 1 (𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-v 3174
This theorem is referenced by:  lmatfval  29001  lmatcl  29003  dvgrat  37316
  Copyright terms: Public domain W3C validator