Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtoclef Structured version   Visualization version   GIF version

Theorem vtoclef 3158
 Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 18-Aug-1993.)
Hypotheses
Ref Expression
vtoclef.1 𝑥𝜑
vtoclef.2 𝐴 ∈ V
vtoclef.3 (𝑥 = 𝐴𝜑)
Assertion
Ref Expression
vtoclef 𝜑
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem vtoclef
StepHypRef Expression
1 vtoclef.2 . . 3 𝐴 ∈ V
21isseti 3086 . 2 𝑥 𝑥 = 𝐴
3 vtoclef.1 . . 3 𝑥𝜑
4 vtoclef.3 . . 3 (𝑥 = 𝐴𝜑)
53, 4exlimi 2043 . 2 (∃𝑥 𝑥 = 𝐴𝜑)
62, 5ax-mp 5 1 𝜑
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1474  ∃wex 1694  Ⅎwnf 1698   ∈ wcel 1938  Vcvv 3077 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-10 1966  ax-12 1983  ax-ext 2494 This theorem depends on definitions:  df-bi 195  df-an 384  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-clab 2501  df-cleq 2507  df-clel 2510  df-v 3079 This theorem is referenced by:  nn0ind-raph  11221  finxpreclem2  32238
 Copyright terms: Public domain W3C validator