MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtoclgftOLD Structured version   Visualization version   GIF version

Theorem vtoclgftOLD 3387
Description: Obsolete proof of vtoclgft 3386 as of 11-Aug-2021. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 12-Oct-2016.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
vtoclgftOLD (((𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝜑) ∧ 𝐴𝑉) → 𝜓)

Proof of Theorem vtoclgftOLD
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elex 3344 . 2 (𝐴𝑉𝐴 ∈ V)
2 elisset 3347 . . . . 5 (𝐴 ∈ V → ∃𝑧 𝑧 = 𝐴)
323ad2ant3 1129 . . . 4 (((𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝜑) ∧ 𝐴 ∈ V) → ∃𝑧 𝑧 = 𝐴)
4 nfnfc1 2897 . . . . . . 7 𝑥𝑥𝐴
5 nfcvd 2895 . . . . . . . 8 (𝑥𝐴𝑥𝑧)
6 id 22 . . . . . . . 8 (𝑥𝐴𝑥𝐴)
75, 6nfeqd 2902 . . . . . . 7 (𝑥𝐴 → Ⅎ𝑥 𝑧 = 𝐴)
8 eqeq1 2756 . . . . . . . 8 (𝑧 = 𝑥 → (𝑧 = 𝐴𝑥 = 𝐴))
98a1i 11 . . . . . . 7 (𝑥𝐴 → (𝑧 = 𝑥 → (𝑧 = 𝐴𝑥 = 𝐴)))
104, 7, 9cbvexd 2415 . . . . . 6 (𝑥𝐴 → (∃𝑧 𝑧 = 𝐴 ↔ ∃𝑥 𝑥 = 𝐴))
1110ad2antrr 764 . . . . 5 (((𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝜑)) → (∃𝑧 𝑧 = 𝐴 ↔ ∃𝑥 𝑥 = 𝐴))
12113adant3 1126 . . . 4 (((𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝜑) ∧ 𝐴 ∈ V) → (∃𝑧 𝑧 = 𝐴 ↔ ∃𝑥 𝑥 = 𝐴))
133, 12mpbid 222 . . 3 (((𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝜑) ∧ 𝐴 ∈ V) → ∃𝑥 𝑥 = 𝐴)
14 biimp 205 . . . . . . . . 9 ((𝜑𝜓) → (𝜑𝜓))
1514imim2i 16 . . . . . . . 8 ((𝑥 = 𝐴 → (𝜑𝜓)) → (𝑥 = 𝐴 → (𝜑𝜓)))
1615com23 86 . . . . . . 7 ((𝑥 = 𝐴 → (𝜑𝜓)) → (𝜑 → (𝑥 = 𝐴𝜓)))
1716imp 444 . . . . . 6 (((𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝜑) → (𝑥 = 𝐴𝜓))
1817alanimi 1885 . . . . 5 ((∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝜑) → ∀𝑥(𝑥 = 𝐴𝜓))
19183ad2ant2 1128 . . . 4 (((𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝜑) ∧ 𝐴 ∈ V) → ∀𝑥(𝑥 = 𝐴𝜓))
20 simp1r 1238 . . . . 5 (((𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝜑) ∧ 𝐴 ∈ V) → Ⅎ𝑥𝜓)
21 19.23t 2218 . . . . 5 (Ⅎ𝑥𝜓 → (∀𝑥(𝑥 = 𝐴𝜓) ↔ (∃𝑥 𝑥 = 𝐴𝜓)))
2220, 21syl 17 . . . 4 (((𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝜑) ∧ 𝐴 ∈ V) → (∀𝑥(𝑥 = 𝐴𝜓) ↔ (∃𝑥 𝑥 = 𝐴𝜓)))
2319, 22mpbid 222 . . 3 (((𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝜑) ∧ 𝐴 ∈ V) → (∃𝑥 𝑥 = 𝐴𝜓))
2413, 23mpd 15 . 2 (((𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝜑) ∧ 𝐴 ∈ V) → 𝜓)
251, 24syl3an3 1168 1 (((𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝜑) ∧ 𝐴𝑉) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072  wal 1622   = wceq 1624  wex 1845  wnf 1849  wcel 2131  wnfc 2881  Vcvv 3332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-v 3334
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator