![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtxdginducedm1lem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for vtxdginducedm1 26647: the edge function in the induced subgraph 𝑆 of a pseudograph 𝐺 obtained by removing one vertex 𝑁. (Contributed by AV, 16-Dec-2021.) |
Ref | Expression |
---|---|
vtxdginducedm1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
vtxdginducedm1.e | ⊢ 𝐸 = (iEdg‘𝐺) |
vtxdginducedm1.k | ⊢ 𝐾 = (𝑉 ∖ {𝑁}) |
vtxdginducedm1.i | ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} |
vtxdginducedm1.p | ⊢ 𝑃 = (𝐸 ↾ 𝐼) |
vtxdginducedm1.s | ⊢ 𝑆 = 〈𝐾, 𝑃〉 |
Ref | Expression |
---|---|
vtxdginducedm1lem1 | ⊢ (iEdg‘𝑆) = 𝑃 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtxdginducedm1.s | . . 3 ⊢ 𝑆 = 〈𝐾, 𝑃〉 | |
2 | 1 | fveq2i 6353 | . 2 ⊢ (iEdg‘𝑆) = (iEdg‘〈𝐾, 𝑃〉) |
3 | vtxdginducedm1.k | . . . 4 ⊢ 𝐾 = (𝑉 ∖ {𝑁}) | |
4 | vtxdginducedm1.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
5 | 4 | fvexi 6361 | . . . . 5 ⊢ 𝑉 ∈ V |
6 | 5 | difexi 4959 | . . . 4 ⊢ (𝑉 ∖ {𝑁}) ∈ V |
7 | 3, 6 | eqeltri 2833 | . . 3 ⊢ 𝐾 ∈ V |
8 | vtxdginducedm1.p | . . . 4 ⊢ 𝑃 = (𝐸 ↾ 𝐼) | |
9 | vtxdginducedm1.e | . . . . . 6 ⊢ 𝐸 = (iEdg‘𝐺) | |
10 | 9 | fvexi 6361 | . . . . 5 ⊢ 𝐸 ∈ V |
11 | 10 | resex 5599 | . . . 4 ⊢ (𝐸 ↾ 𝐼) ∈ V |
12 | 8, 11 | eqeltri 2833 | . . 3 ⊢ 𝑃 ∈ V |
13 | 7, 12 | opiedgfvi 26087 | . 2 ⊢ (iEdg‘〈𝐾, 𝑃〉) = 𝑃 |
14 | 2, 13 | eqtri 2780 | 1 ⊢ (iEdg‘𝑆) = 𝑃 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1630 ∉ wnel 3033 {crab 3052 Vcvv 3338 ∖ cdif 3710 {csn 4319 〈cop 4325 dom cdm 5264 ↾ cres 5266 ‘cfv 6047 Vtxcvtx 26071 iEdgciedg 26072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-8 2139 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 ax-sep 4931 ax-nul 4939 ax-pow 4990 ax-pr 5053 ax-un 7112 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-eu 2609 df-mo 2610 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ral 3053 df-rex 3054 df-rab 3057 df-v 3340 df-sbc 3575 df-dif 3716 df-un 3718 df-in 3720 df-ss 3727 df-nul 4057 df-if 4229 df-sn 4320 df-pr 4322 df-op 4326 df-uni 4587 df-br 4803 df-opab 4863 df-mpt 4880 df-id 5172 df-xp 5270 df-rel 5271 df-cnv 5272 df-co 5273 df-dm 5274 df-rn 5275 df-res 5276 df-iota 6010 df-fun 6049 df-fv 6055 df-2nd 7332 df-iedg 26074 |
This theorem is referenced by: vtxdginducedm1lem2 26644 vtxdginducedm1lem3 26645 vtxdginducedm1fi 26648 finsumvtxdg2ssteplem4 26652 |
Copyright terms: Public domain | W3C validator |