MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdun Structured version   Visualization version   GIF version

Theorem vtxdun 26358
Description: The degree of a vertex in the union of two graphs on the same vertex set is the sum of the degrees of the vertex in each graph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 21-Dec-2017.) (Revised by AV, 19-Feb-2021.)
Hypotheses
Ref Expression
vtxdun.i 𝐼 = (iEdg‘𝐺)
vtxdun.j 𝐽 = (iEdg‘𝐻)
vtxdun.vg 𝑉 = (Vtx‘𝐺)
vtxdun.vh (𝜑 → (Vtx‘𝐻) = 𝑉)
vtxdun.vu (𝜑 → (Vtx‘𝑈) = 𝑉)
vtxdun.d (𝜑 → (dom 𝐼 ∩ dom 𝐽) = ∅)
vtxdun.fi (𝜑 → Fun 𝐼)
vtxdun.fj (𝜑 → Fun 𝐽)
vtxdun.n (𝜑𝑁𝑉)
vtxdun.u (𝜑 → (iEdg‘𝑈) = (𝐼𝐽))
Assertion
Ref Expression
vtxdun (𝜑 → ((VtxDeg‘𝑈)‘𝑁) = (((VtxDeg‘𝐺)‘𝑁) +𝑒 ((VtxDeg‘𝐻)‘𝑁)))

Proof of Theorem vtxdun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-rab 2918 . . . . . . . 8 {𝑥 ∈ dom (iEdg‘𝑈) ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)} = {𝑥 ∣ (𝑥 ∈ dom (iEdg‘𝑈) ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥))}
2 vtxdun.u . . . . . . . . . . . . . . 15 (𝜑 → (iEdg‘𝑈) = (𝐼𝐽))
32dmeqd 5315 . . . . . . . . . . . . . 14 (𝜑 → dom (iEdg‘𝑈) = dom (𝐼𝐽))
4 dmun 5320 . . . . . . . . . . . . . 14 dom (𝐼𝐽) = (dom 𝐼 ∪ dom 𝐽)
53, 4syl6eq 2670 . . . . . . . . . . . . 13 (𝜑 → dom (iEdg‘𝑈) = (dom 𝐼 ∪ dom 𝐽))
65eleq2d 2685 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ dom (iEdg‘𝑈) ↔ 𝑥 ∈ (dom 𝐼 ∪ dom 𝐽)))
7 elun 3745 . . . . . . . . . . . 12 (𝑥 ∈ (dom 𝐼 ∪ dom 𝐽) ↔ (𝑥 ∈ dom 𝐼𝑥 ∈ dom 𝐽))
86, 7syl6bb 276 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ dom (iEdg‘𝑈) ↔ (𝑥 ∈ dom 𝐼𝑥 ∈ dom 𝐽)))
98anbi1d 740 . . . . . . . . . 10 (𝜑 → ((𝑥 ∈ dom (iEdg‘𝑈) ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ↔ ((𝑥 ∈ dom 𝐼𝑥 ∈ dom 𝐽) ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥))))
10 andir 911 . . . . . . . . . 10 (((𝑥 ∈ dom 𝐼𝑥 ∈ dom 𝐽) ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ↔ ((𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ∨ (𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥))))
119, 10syl6bb 276 . . . . . . . . 9 (𝜑 → ((𝑥 ∈ dom (iEdg‘𝑈) ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ↔ ((𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ∨ (𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥)))))
1211abbidv 2739 . . . . . . . 8 (𝜑 → {𝑥 ∣ (𝑥 ∈ dom (iEdg‘𝑈) ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥))} = {𝑥 ∣ ((𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ∨ (𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥)))})
131, 12syl5eq 2666 . . . . . . 7 (𝜑 → {𝑥 ∈ dom (iEdg‘𝑈) ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)} = {𝑥 ∣ ((𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ∨ (𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥)))})
14 unab 3886 . . . . . . . . 9 ({𝑥 ∣ (𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥))} ∪ {𝑥 ∣ (𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥))}) = {𝑥 ∣ ((𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ∨ (𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥)))}
1514eqcomi 2629 . . . . . . . 8 {𝑥 ∣ ((𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ∨ (𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥)))} = ({𝑥 ∣ (𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥))} ∪ {𝑥 ∣ (𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥))})
1615a1i 11 . . . . . . 7 (𝜑 → {𝑥 ∣ ((𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ∨ (𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥)))} = ({𝑥 ∣ (𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥))} ∪ {𝑥 ∣ (𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥))}))
17 df-rab 2918 . . . . . . . . 9 {𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥)} = {𝑥 ∣ (𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥))}
182fveq1d 6180 . . . . . . . . . . . . 13 (𝜑 → ((iEdg‘𝑈)‘𝑥) = ((𝐼𝐽)‘𝑥))
1918adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ dom 𝐼) → ((iEdg‘𝑈)‘𝑥) = ((𝐼𝐽)‘𝑥))
20 vtxdun.fi . . . . . . . . . . . . . . 15 (𝜑 → Fun 𝐼)
21 funfn 5906 . . . . . . . . . . . . . . 15 (Fun 𝐼𝐼 Fn dom 𝐼)
2220, 21sylib 208 . . . . . . . . . . . . . 14 (𝜑𝐼 Fn dom 𝐼)
2322adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ dom 𝐼) → 𝐼 Fn dom 𝐼)
24 vtxdun.fj . . . . . . . . . . . . . . 15 (𝜑 → Fun 𝐽)
25 funfn 5906 . . . . . . . . . . . . . . 15 (Fun 𝐽𝐽 Fn dom 𝐽)
2624, 25sylib 208 . . . . . . . . . . . . . 14 (𝜑𝐽 Fn dom 𝐽)
2726adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ dom 𝐼) → 𝐽 Fn dom 𝐽)
28 vtxdun.d . . . . . . . . . . . . . 14 (𝜑 → (dom 𝐼 ∩ dom 𝐽) = ∅)
2928anim1i 591 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ dom 𝐼) → ((dom 𝐼 ∩ dom 𝐽) = ∅ ∧ 𝑥 ∈ dom 𝐼))
30 fvun1 6256 . . . . . . . . . . . . 13 ((𝐼 Fn dom 𝐼𝐽 Fn dom 𝐽 ∧ ((dom 𝐼 ∩ dom 𝐽) = ∅ ∧ 𝑥 ∈ dom 𝐼)) → ((𝐼𝐽)‘𝑥) = (𝐼𝑥))
3123, 27, 29, 30syl3anc 1324 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ dom 𝐼) → ((𝐼𝐽)‘𝑥) = (𝐼𝑥))
3219, 31eqtrd 2654 . . . . . . . . . . 11 ((𝜑𝑥 ∈ dom 𝐼) → ((iEdg‘𝑈)‘𝑥) = (𝐼𝑥))
3332eleq2d 2685 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom 𝐼) → (𝑁 ∈ ((iEdg‘𝑈)‘𝑥) ↔ 𝑁 ∈ (𝐼𝑥)))
3433rabbidva 3183 . . . . . . . . 9 (𝜑 → {𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥)} = {𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)})
3517, 34syl5eqr 2668 . . . . . . . 8 (𝜑 → {𝑥 ∣ (𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥))} = {𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)})
36 df-rab 2918 . . . . . . . . 9 {𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥)} = {𝑥 ∣ (𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥))}
3718adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ dom 𝐽) → ((iEdg‘𝑈)‘𝑥) = ((𝐼𝐽)‘𝑥))
3822adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ dom 𝐽) → 𝐼 Fn dom 𝐼)
3926adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ dom 𝐽) → 𝐽 Fn dom 𝐽)
4028anim1i 591 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ dom 𝐽) → ((dom 𝐼 ∩ dom 𝐽) = ∅ ∧ 𝑥 ∈ dom 𝐽))
41 fvun2 6257 . . . . . . . . . . . . 13 ((𝐼 Fn dom 𝐼𝐽 Fn dom 𝐽 ∧ ((dom 𝐼 ∩ dom 𝐽) = ∅ ∧ 𝑥 ∈ dom 𝐽)) → ((𝐼𝐽)‘𝑥) = (𝐽𝑥))
4238, 39, 40, 41syl3anc 1324 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ dom 𝐽) → ((𝐼𝐽)‘𝑥) = (𝐽𝑥))
4337, 42eqtrd 2654 . . . . . . . . . . 11 ((𝜑𝑥 ∈ dom 𝐽) → ((iEdg‘𝑈)‘𝑥) = (𝐽𝑥))
4443eleq2d 2685 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom 𝐽) → (𝑁 ∈ ((iEdg‘𝑈)‘𝑥) ↔ 𝑁 ∈ (𝐽𝑥)))
4544rabbidva 3183 . . . . . . . . 9 (𝜑 → {𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥)} = {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)})
4636, 45syl5eqr 2668 . . . . . . . 8 (𝜑 → {𝑥 ∣ (𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥))} = {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)})
4735, 46uneq12d 3760 . . . . . . 7 (𝜑 → ({𝑥 ∣ (𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥))} ∪ {𝑥 ∣ (𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥))}) = ({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∪ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}))
4813, 16, 473eqtrd 2658 . . . . . 6 (𝜑 → {𝑥 ∈ dom (iEdg‘𝑈) ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)} = ({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∪ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}))
4948fveq2d 6182 . . . . 5 (𝜑 → (#‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)}) = (#‘({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∪ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)})))
50 vtxdun.i . . . . . . . . . 10 𝐼 = (iEdg‘𝐺)
51 fvex 6188 . . . . . . . . . 10 (iEdg‘𝐺) ∈ V
5250, 51eqeltri 2695 . . . . . . . . 9 𝐼 ∈ V
5352dmex 7084 . . . . . . . 8 dom 𝐼 ∈ V
5453rabex 4804 . . . . . . 7 {𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∈ V
5554a1i 11 . . . . . 6 (𝜑 → {𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∈ V)
56 vtxdun.j . . . . . . . . . 10 𝐽 = (iEdg‘𝐻)
57 fvex 6188 . . . . . . . . . 10 (iEdg‘𝐻) ∈ V
5856, 57eqeltri 2695 . . . . . . . . 9 𝐽 ∈ V
5958dmex 7084 . . . . . . . 8 dom 𝐽 ∈ V
6059rabex 4804 . . . . . . 7 {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)} ∈ V
6160a1i 11 . . . . . 6 (𝜑 → {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)} ∈ V)
62 ssrab2 3679 . . . . . . . . 9 {𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ⊆ dom 𝐼
63 ssrab2 3679 . . . . . . . . 9 {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)} ⊆ dom 𝐽
64 ss2in 3832 . . . . . . . . 9 (({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ⊆ dom 𝐼 ∧ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)} ⊆ dom 𝐽) → ({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∩ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) ⊆ (dom 𝐼 ∩ dom 𝐽))
6562, 63, 64mp2an 707 . . . . . . . 8 ({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∩ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) ⊆ (dom 𝐼 ∩ dom 𝐽)
6665, 28syl5sseq 3645 . . . . . . 7 (𝜑 → ({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∩ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) ⊆ ∅)
67 ss0 3965 . . . . . . 7 (({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∩ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) ⊆ ∅ → ({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∩ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) = ∅)
6866, 67syl 17 . . . . . 6 (𝜑 → ({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∩ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) = ∅)
69 hashunx 13158 . . . . . 6 (({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∈ V ∧ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)} ∈ V ∧ ({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∩ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) = ∅) → (#‘({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∪ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)})) = ((#‘{𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)}) +𝑒 (#‘{𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)})))
7055, 61, 68, 69syl3anc 1324 . . . . 5 (𝜑 → (#‘({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∪ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)})) = ((#‘{𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)}) +𝑒 (#‘{𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)})))
7149, 70eqtrd 2654 . . . 4 (𝜑 → (#‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)}) = ((#‘{𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)}) +𝑒 (#‘{𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)})))
72 df-rab 2918 . . . . . . . 8 {𝑥 ∈ dom (iEdg‘𝑈) ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}} = {𝑥 ∣ (𝑥 ∈ dom (iEdg‘𝑈) ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})}
738anbi1d 740 . . . . . . . . . 10 (𝜑 → ((𝑥 ∈ dom (iEdg‘𝑈) ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ↔ ((𝑥 ∈ dom 𝐼𝑥 ∈ dom 𝐽) ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})))
74 andir 911 . . . . . . . . . 10 (((𝑥 ∈ dom 𝐼𝑥 ∈ dom 𝐽) ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ↔ ((𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ∨ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})))
7573, 74syl6bb 276 . . . . . . . . 9 (𝜑 → ((𝑥 ∈ dom (iEdg‘𝑈) ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ↔ ((𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ∨ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}))))
7675abbidv 2739 . . . . . . . 8 (𝜑 → {𝑥 ∣ (𝑥 ∈ dom (iEdg‘𝑈) ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})} = {𝑥 ∣ ((𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ∨ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}))})
7772, 76syl5eq 2666 . . . . . . 7 (𝜑 → {𝑥 ∈ dom (iEdg‘𝑈) ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}} = {𝑥 ∣ ((𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ∨ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}))})
78 unab 3886 . . . . . . . . 9 ({𝑥 ∣ (𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})} ∪ {𝑥 ∣ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})}) = {𝑥 ∣ ((𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ∨ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}))}
7978eqcomi 2629 . . . . . . . 8 {𝑥 ∣ ((𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ∨ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}))} = ({𝑥 ∣ (𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})} ∪ {𝑥 ∣ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})})
8079a1i 11 . . . . . . 7 (𝜑 → {𝑥 ∣ ((𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ∨ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}))} = ({𝑥 ∣ (𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})} ∪ {𝑥 ∣ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})}))
81 df-rab 2918 . . . . . . . . 9 {𝑥 ∈ dom 𝐼 ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}} = {𝑥 ∣ (𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})}
8232eqeq1d 2622 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom 𝐼) → (((iEdg‘𝑈)‘𝑥) = {𝑁} ↔ (𝐼𝑥) = {𝑁}))
8382rabbidva 3183 . . . . . . . . 9 (𝜑 → {𝑥 ∈ dom 𝐼 ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}} = {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}})
8481, 83syl5eqr 2668 . . . . . . . 8 (𝜑 → {𝑥 ∣ (𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})} = {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}})
85 df-rab 2918 . . . . . . . . 9 {𝑥 ∈ dom 𝐽 ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}} = {𝑥 ∣ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})}
8643eqeq1d 2622 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom 𝐽) → (((iEdg‘𝑈)‘𝑥) = {𝑁} ↔ (𝐽𝑥) = {𝑁}))
8786rabbidva 3183 . . . . . . . . 9 (𝜑 → {𝑥 ∈ dom 𝐽 ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}} = {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}})
8885, 87syl5eqr 2668 . . . . . . . 8 (𝜑 → {𝑥 ∣ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})} = {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}})
8984, 88uneq12d 3760 . . . . . . 7 (𝜑 → ({𝑥 ∣ (𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})} ∪ {𝑥 ∣ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})}) = ({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∪ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}))
9077, 80, 893eqtrd 2658 . . . . . 6 (𝜑 → {𝑥 ∈ dom (iEdg‘𝑈) ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}} = ({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∪ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}))
9190fveq2d 6182 . . . . 5 (𝜑 → (#‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}}) = (#‘({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∪ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}})))
9253rabex 4804 . . . . . . 7 {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∈ V
9392a1i 11 . . . . . 6 (𝜑 → {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∈ V)
9459rabex 4804 . . . . . . 7 {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}} ∈ V
9594a1i 11 . . . . . 6 (𝜑 → {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}} ∈ V)
96 ssrab2 3679 . . . . . . . . 9 {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ⊆ dom 𝐼
97 ssrab2 3679 . . . . . . . . 9 {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}} ⊆ dom 𝐽
98 ss2in 3832 . . . . . . . . 9 (({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ⊆ dom 𝐼 ∧ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}} ⊆ dom 𝐽) → ({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∩ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}) ⊆ (dom 𝐼 ∩ dom 𝐽))
9996, 97, 98mp2an 707 . . . . . . . 8 ({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∩ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}) ⊆ (dom 𝐼 ∩ dom 𝐽)
10099, 28syl5sseq 3645 . . . . . . 7 (𝜑 → ({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∩ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}) ⊆ ∅)
101 ss0 3965 . . . . . . 7 (({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∩ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}) ⊆ ∅ → ({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∩ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}) = ∅)
102100, 101syl 17 . . . . . 6 (𝜑 → ({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∩ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}) = ∅)
103 hashunx 13158 . . . . . 6 (({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∈ V ∧ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}} ∈ V ∧ ({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∩ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}) = ∅) → (#‘({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∪ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}})) = ((#‘{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}}) +𝑒 (#‘{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}})))
10493, 95, 102, 103syl3anc 1324 . . . . 5 (𝜑 → (#‘({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∪ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}})) = ((#‘{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}}) +𝑒 (#‘{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}})))
10591, 104eqtrd 2654 . . . 4 (𝜑 → (#‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}}) = ((#‘{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}}) +𝑒 (#‘{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}})))
10671, 105oveq12d 6653 . . 3 (𝜑 → ((#‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)}) +𝑒 (#‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}})) = (((#‘{𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)}) +𝑒 (#‘{𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)})) +𝑒 ((#‘{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}}) +𝑒 (#‘{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}))))
107 hashxnn0 13110 . . . . 5 ({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∈ V → (#‘{𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)}) ∈ ℕ0*)
10855, 107syl 17 . . . 4 (𝜑 → (#‘{𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)}) ∈ ℕ0*)
109 hashxnn0 13110 . . . . 5 ({𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)} ∈ V → (#‘{𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) ∈ ℕ0*)
11061, 109syl 17 . . . 4 (𝜑 → (#‘{𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) ∈ ℕ0*)
111 hashxnn0 13110 . . . . 5 ({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∈ V → (#‘{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}}) ∈ ℕ0*)
11293, 111syl 17 . . . 4 (𝜑 → (#‘{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}}) ∈ ℕ0*)
113 hashxnn0 13110 . . . . 5 ({𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}} ∈ V → (#‘{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}) ∈ ℕ0*)
11495, 113syl 17 . . . 4 (𝜑 → (#‘{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}) ∈ ℕ0*)
115108, 110, 112, 114xnn0add4d 12119 . . 3 (𝜑 → (((#‘{𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)}) +𝑒 (#‘{𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)})) +𝑒 ((#‘{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}}) +𝑒 (#‘{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}))) = (((#‘{𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)}) +𝑒 (#‘{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}})) +𝑒 ((#‘{𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) +𝑒 (#‘{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}))))
116106, 115eqtrd 2654 . 2 (𝜑 → ((#‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)}) +𝑒 (#‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}})) = (((#‘{𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)}) +𝑒 (#‘{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}})) +𝑒 ((#‘{𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) +𝑒 (#‘{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}))))
117 vtxdun.n . . . 4 (𝜑𝑁𝑉)
118 vtxdun.vu . . . 4 (𝜑 → (Vtx‘𝑈) = 𝑉)
119117, 118eleqtrrd 2702 . . 3 (𝜑𝑁 ∈ (Vtx‘𝑈))
120 eqid 2620 . . . 4 (Vtx‘𝑈) = (Vtx‘𝑈)
121 eqid 2620 . . . 4 (iEdg‘𝑈) = (iEdg‘𝑈)
122 eqid 2620 . . . 4 dom (iEdg‘𝑈) = dom (iEdg‘𝑈)
123120, 121, 122vtxdgval 26345 . . 3 (𝑁 ∈ (Vtx‘𝑈) → ((VtxDeg‘𝑈)‘𝑁) = ((#‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)}) +𝑒 (#‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}})))
124119, 123syl 17 . 2 (𝜑 → ((VtxDeg‘𝑈)‘𝑁) = ((#‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)}) +𝑒 (#‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}})))
125 vtxdun.vg . . . . 5 𝑉 = (Vtx‘𝐺)
126 eqid 2620 . . . . 5 dom 𝐼 = dom 𝐼
127125, 50, 126vtxdgval 26345 . . . 4 (𝑁𝑉 → ((VtxDeg‘𝐺)‘𝑁) = ((#‘{𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)}) +𝑒 (#‘{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}})))
128117, 127syl 17 . . 3 (𝜑 → ((VtxDeg‘𝐺)‘𝑁) = ((#‘{𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)}) +𝑒 (#‘{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}})))
129 vtxdun.vh . . . . 5 (𝜑 → (Vtx‘𝐻) = 𝑉)
130117, 129eleqtrrd 2702 . . . 4 (𝜑𝑁 ∈ (Vtx‘𝐻))
131 eqid 2620 . . . . 5 (Vtx‘𝐻) = (Vtx‘𝐻)
132 eqid 2620 . . . . 5 dom 𝐽 = dom 𝐽
133131, 56, 132vtxdgval 26345 . . . 4 (𝑁 ∈ (Vtx‘𝐻) → ((VtxDeg‘𝐻)‘𝑁) = ((#‘{𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) +𝑒 (#‘{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}})))
134130, 133syl 17 . . 3 (𝜑 → ((VtxDeg‘𝐻)‘𝑁) = ((#‘{𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) +𝑒 (#‘{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}})))
135128, 134oveq12d 6653 . 2 (𝜑 → (((VtxDeg‘𝐺)‘𝑁) +𝑒 ((VtxDeg‘𝐻)‘𝑁)) = (((#‘{𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)}) +𝑒 (#‘{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}})) +𝑒 ((#‘{𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) +𝑒 (#‘{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}))))
136116, 124, 1353eqtr4d 2664 1 (𝜑 → ((VtxDeg‘𝑈)‘𝑁) = (((VtxDeg‘𝐺)‘𝑁) +𝑒 ((VtxDeg‘𝐻)‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384   = wceq 1481  wcel 1988  {cab 2606  {crab 2913  Vcvv 3195  cun 3565  cin 3566  wss 3567  c0 3907  {csn 4168  dom cdm 5104  Fun wfun 5870   Fn wfn 5871  cfv 5876  (class class class)co 6635  0*cxnn0 11348   +𝑒 cxad 11929  #chash 13100  Vtxcvtx 25855  iEdgciedg 25856  VtxDegcvtxdg 26342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-oadd 7549  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-card 8750  df-cda 8975  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-nn 11006  df-n0 11278  df-xnn0 11349  df-z 11363  df-uz 11673  df-xadd 11932  df-hash 13101  df-vtxdg 26343
This theorem is referenced by:  vtxdfiun  26359  vtxduhgrun  26360  p1evtxdeqlem  26389
  Copyright terms: Public domain W3C validator