![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtxvalOLD | Structured version Visualization version GIF version |
Description: Obsolete version of vtxval 26077 as of 11-Nov-2021. (Contributed by AV, 9-Jan-2020.) (Revised by AV, 21-Sep-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
vtxvalOLD | ⊢ (𝐺 ∈ 𝑉 → (Vtx‘𝐺) = if(𝐺 ∈ (V × V), (1st ‘𝐺), (Base‘𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3352 | . 2 ⊢ (𝐺 ∈ 𝑉 → 𝐺 ∈ V) | |
2 | eleq1 2827 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑔 ∈ (V × V) ↔ 𝐺 ∈ (V × V))) | |
3 | fveq2 6352 | . . . 4 ⊢ (𝑔 = 𝐺 → (1st ‘𝑔) = (1st ‘𝐺)) | |
4 | fveq2 6352 | . . . 4 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) | |
5 | 2, 3, 4 | ifbieq12d 4257 | . . 3 ⊢ (𝑔 = 𝐺 → if(𝑔 ∈ (V × V), (1st ‘𝑔), (Base‘𝑔)) = if(𝐺 ∈ (V × V), (1st ‘𝐺), (Base‘𝐺))) |
6 | df-vtx 26075 | . . 3 ⊢ Vtx = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st ‘𝑔), (Base‘𝑔))) | |
7 | fvex 6362 | . . . 4 ⊢ (1st ‘𝐺) ∈ V | |
8 | fvex 6362 | . . . 4 ⊢ (Base‘𝐺) ∈ V | |
9 | 7, 8 | ifex 4300 | . . 3 ⊢ if(𝐺 ∈ (V × V), (1st ‘𝐺), (Base‘𝐺)) ∈ V |
10 | 5, 6, 9 | fvmpt 6444 | . 2 ⊢ (𝐺 ∈ V → (Vtx‘𝐺) = if(𝐺 ∈ (V × V), (1st ‘𝐺), (Base‘𝐺))) |
11 | 1, 10 | syl 17 | 1 ⊢ (𝐺 ∈ 𝑉 → (Vtx‘𝐺) = if(𝐺 ∈ (V × V), (1st ‘𝐺), (Base‘𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 Vcvv 3340 ifcif 4230 × cxp 5264 ‘cfv 6049 1st c1st 7331 Basecbs 16059 Vtxcvtx 26073 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-iota 6012 df-fun 6051 df-fv 6057 df-vtx 26075 |
This theorem is referenced by: funvtxdm2valOLD 26094 funvtxdmge2valOLD 26098 |
Copyright terms: Public domain | W3C validator |