Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wallispilem2 Structured version   Visualization version   GIF version

Theorem wallispilem2 42228
Description: A first set of properties for the sequence 𝐼 that will be used in the proof of the Wallis product formula. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypothesis
Ref Expression
wallispilem2.1 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)
Assertion
Ref Expression
wallispilem2 ((𝐼‘0) = π ∧ (𝐼‘1) = 2 ∧ (𝑁 ∈ (ℤ‘2) → (𝐼𝑁) = (((𝑁 − 1) / 𝑁) · (𝐼‘(𝑁 − 2)))))
Distinct variable group:   𝑥,𝑛,𝑁
Allowed substitution hints:   𝐼(𝑥,𝑛)

Proof of Theorem wallispilem2
StepHypRef Expression
1 0nn0 11900 . . 3 0 ∈ ℕ0
2 oveq2 7153 . . . . . . . 8 (𝑛 = 0 → ((sin‘𝑥)↑𝑛) = ((sin‘𝑥)↑0))
32adantr 481 . . . . . . 7 ((𝑛 = 0 ∧ 𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑𝑛) = ((sin‘𝑥)↑0))
4 ioosscn 41645 . . . . . . . . . . 11 (0(,)π) ⊆ ℂ
54sseli 3960 . . . . . . . . . 10 (𝑥 ∈ (0(,)π) → 𝑥 ∈ ℂ)
65sincld 15471 . . . . . . . . 9 (𝑥 ∈ (0(,)π) → (sin‘𝑥) ∈ ℂ)
76adantl 482 . . . . . . . 8 ((𝑛 = 0 ∧ 𝑥 ∈ (0(,)π)) → (sin‘𝑥) ∈ ℂ)
87exp0d 13492 . . . . . . 7 ((𝑛 = 0 ∧ 𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑0) = 1)
93, 8eqtrd 2853 . . . . . 6 ((𝑛 = 0 ∧ 𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑𝑛) = 1)
109itgeq2dv 24309 . . . . 5 (𝑛 = 0 → ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥 = ∫(0(,)π)1 d𝑥)
11 ioombl 24093 . . . . . . 7 (0(,)π) ∈ dom vol
12 0re 10631 . . . . . . . 8 0 ∈ ℝ
13 pire 24971 . . . . . . . 8 π ∈ ℝ
14 ioovolcl 24098 . . . . . . . 8 ((0 ∈ ℝ ∧ π ∈ ℝ) → (vol‘(0(,)π)) ∈ ℝ)
1512, 13, 14mp2an 688 . . . . . . 7 (vol‘(0(,)π)) ∈ ℝ
16 ax-1cn 10583 . . . . . . 7 1 ∈ ℂ
17 itgconst 24346 . . . . . . 7 (((0(,)π) ∈ dom vol ∧ (vol‘(0(,)π)) ∈ ℝ ∧ 1 ∈ ℂ) → ∫(0(,)π)1 d𝑥 = (1 · (vol‘(0(,)π))))
1811, 15, 16, 17mp3an 1452 . . . . . 6 ∫(0(,)π)1 d𝑥 = (1 · (vol‘(0(,)π)))
1915recni 10643 . . . . . . . 8 (vol‘(0(,)π)) ∈ ℂ
2019mulid2i 10634 . . . . . . 7 (1 · (vol‘(0(,)π))) = (vol‘(0(,)π))
21 pipos 24973 . . . . . . . . . 10 0 < π
2212, 13, 21ltleii 10751 . . . . . . . . 9 0 ≤ π
23 volioo 24097 . . . . . . . . 9 ((0 ∈ ℝ ∧ π ∈ ℝ ∧ 0 ≤ π) → (vol‘(0(,)π)) = (π − 0))
2412, 13, 22, 23mp3an 1452 . . . . . . . 8 (vol‘(0(,)π)) = (π − 0)
2513recni 10643 . . . . . . . . 9 π ∈ ℂ
2625subid1i 10946 . . . . . . . 8 (π − 0) = π
2724, 26eqtri 2841 . . . . . . 7 (vol‘(0(,)π)) = π
2820, 27eqtri 2841 . . . . . 6 (1 · (vol‘(0(,)π))) = π
2918, 28eqtri 2841 . . . . 5 ∫(0(,)π)1 d𝑥 = π
3010, 29syl6eq 2869 . . . 4 (𝑛 = 0 → ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥 = π)
31 wallispilem2.1 . . . 4 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)
3213elexi 3511 . . . 4 π ∈ V
3330, 31, 32fvmpt 6761 . . 3 (0 ∈ ℕ0 → (𝐼‘0) = π)
341, 33ax-mp 5 . 2 (𝐼‘0) = π
35 1nn0 11901 . . . 4 1 ∈ ℕ0
36 simpl 483 . . . . . . . 8 ((𝑛 = 1 ∧ 𝑥 ∈ (0(,)π)) → 𝑛 = 1)
3736oveq2d 7161 . . . . . . 7 ((𝑛 = 1 ∧ 𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑𝑛) = ((sin‘𝑥)↑1))
386adantl 482 . . . . . . . 8 ((𝑛 = 1 ∧ 𝑥 ∈ (0(,)π)) → (sin‘𝑥) ∈ ℂ)
3938exp1d 13493 . . . . . . 7 ((𝑛 = 1 ∧ 𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑1) = (sin‘𝑥))
4037, 39eqtrd 2853 . . . . . 6 ((𝑛 = 1 ∧ 𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑𝑛) = (sin‘𝑥))
4140itgeq2dv 24309 . . . . 5 (𝑛 = 1 → ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥 = ∫(0(,)π)(sin‘𝑥) d𝑥)
42 itgex 24298 . . . . 5 ∫(0(,)π)(sin‘𝑥) d𝑥 ∈ V
4341, 31, 42fvmpt 6761 . . . 4 (1 ∈ ℕ0 → (𝐼‘1) = ∫(0(,)π)(sin‘𝑥) d𝑥)
4435, 43ax-mp 5 . . 3 (𝐼‘1) = ∫(0(,)π)(sin‘𝑥) d𝑥
45 itgsin0pi 42113 . . 3 ∫(0(,)π)(sin‘𝑥) d𝑥 = 2
4644, 45eqtri 2841 . 2 (𝐼‘1) = 2
47 id 22 . . 3 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ (ℤ‘2))
4831, 47itgsinexp 42116 . 2 (𝑁 ∈ (ℤ‘2) → (𝐼𝑁) = (((𝑁 − 1) / 𝑁) · (𝐼‘(𝑁 − 2))))
4934, 46, 483pm3.2i 1331 1 ((𝐼‘0) = π ∧ (𝐼‘1) = 2 ∧ (𝑁 ∈ (ℤ‘2) → (𝐼𝑁) = (((𝑁 − 1) / 𝑁) · (𝐼‘(𝑁 − 2)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1079   = wceq 1528  wcel 2105   class class class wbr 5057  cmpt 5137  dom cdm 5548  cfv 6348  (class class class)co 7145  cc 10523  cr 10524  0cc0 10525  1c1 10526   · cmul 10530  cle 10664  cmin 10858   / cdiv 11285  2c2 11680  0cn0 11885  cuz 12231  (,)cioo 12726  cexp 13417  sincsin 15405  πcpi 15408  volcvol 23991  citg 24146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cc 9845  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-symdif 4216  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-disj 5023  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-ofr 7399  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-omul 8096  df-er 8278  df-map 8397  df-pm 8398  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-dju 9318  df-card 9356  df-acn 9359  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12881  df-fzo 13022  df-fl 13150  df-mod 13226  df-seq 13358  df-exp 13418  df-fac 13622  df-bc 13651  df-hash 13679  df-shft 14414  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-limsup 14816  df-clim 14833  df-rlim 14834  df-sum 15031  df-ef 15409  df-sin 15411  df-cos 15412  df-pi 15414  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-hom 16577  df-cco 16578  df-rest 16684  df-topn 16685  df-0g 16703  df-gsum 16704  df-topgen 16705  df-pt 16706  df-prds 16709  df-xrs 16763  df-qtop 16768  df-imas 16769  df-xps 16771  df-mre 16845  df-mrc 16846  df-acs 16848  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-submnd 17945  df-mulg 18163  df-cntz 18385  df-cmn 18837  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-fbas 20470  df-fg 20471  df-cnfld 20474  df-top 21430  df-topon 21447  df-topsp 21469  df-bases 21482  df-cld 21555  df-ntr 21556  df-cls 21557  df-nei 21634  df-lp 21672  df-perf 21673  df-cn 21763  df-cnp 21764  df-haus 21851  df-cmp 21923  df-tx 22098  df-hmeo 22291  df-fil 22382  df-fm 22474  df-flim 22475  df-flf 22476  df-xms 22857  df-ms 22858  df-tms 22859  df-cncf 23413  df-ovol 23992  df-vol 23993  df-mbf 24147  df-itg1 24148  df-itg2 24149  df-ibl 24150  df-itg 24151  df-0p 24198  df-limc 24391  df-dv 24392
This theorem is referenced by:  wallispilem3  42229  wallispilem4  42230
  Copyright terms: Public domain W3C validator