Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wallispilem5 Structured version   Visualization version   GIF version

Theorem wallispilem5 39580
Description: The sequence 𝐻 converges to 1. (Contributed by Glauco Siliprandi, 30-Jun-2017.)
Hypotheses
Ref Expression
wallispilem5.1 𝐹 = (𝑘 ∈ ℕ ↦ (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))))
wallispilem5.2 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)
wallispilem5.3 𝐺 = (𝑛 ∈ ℕ ↦ ((𝐼‘(2 · 𝑛)) / (𝐼‘((2 · 𝑛) + 1))))
wallispilem5.4 𝐻 = (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))))
wallispilem5.5 𝐿 = (𝑛 ∈ ℕ ↦ (((2 · 𝑛) + 1) / (2 · 𝑛)))
Assertion
Ref Expression
wallispilem5 𝐻 ⇝ 1
Distinct variable groups:   𝑘,𝑛,𝑥   𝑥,𝐹   𝑘,𝐺   𝑘,𝐿
Allowed substitution hints:   𝐹(𝑘,𝑛)   𝐺(𝑥,𝑛)   𝐻(𝑥,𝑘,𝑛)   𝐼(𝑥,𝑘,𝑛)   𝐿(𝑥,𝑛)

Proof of Theorem wallispilem5
StepHypRef Expression
1 wallispilem5.1 . . 3 𝐹 = (𝑘 ∈ ℕ ↦ (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))))
2 wallispilem5.2 . . 3 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)
3 wallispilem5.3 . . 3 𝐺 = (𝑛 ∈ ℕ ↦ ((𝐼‘(2 · 𝑛)) / (𝐼‘((2 · 𝑛) + 1))))
4 wallispilem5.4 . . 3 𝐻 = (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))))
51, 2, 3, 4wallispilem4 39579 . 2 𝐺 = 𝐻
6 nnuz 11667 . . . 4 ℕ = (ℤ‘1)
7 1zzd 11353 . . . 4 (⊤ → 1 ∈ ℤ)
8 wallispilem5.5 . . . . 5 𝐿 = (𝑛 ∈ ℕ ↦ (((2 · 𝑛) + 1) / (2 · 𝑛)))
9 2cnd 11038 . . . . 5 (⊤ → 2 ∈ ℂ)
10 2ne0 11058 . . . . . 6 2 ≠ 0
1110a1i 11 . . . . 5 (⊤ → 2 ≠ 0)
12 1cnd 10001 . . . . 5 (⊤ → 1 ∈ ℂ)
138, 9, 11, 12clim1fr1 39224 . . . 4 (⊤ → 𝐿 ⇝ 1)
14 nnex 10971 . . . . . . 7 ℕ ∈ V
1514mptex 6441 . . . . . 6 (𝑛 ∈ ℕ ↦ ((𝐼‘(2 · 𝑛)) / (𝐼‘((2 · 𝑛) + 1)))) ∈ V
163, 15eqeltri 2700 . . . . 5 𝐺 ∈ V
1716a1i 11 . . . 4 (⊤ → 𝐺 ∈ V)
18 2nn0 11254 . . . . . . . . . . . 12 2 ∈ ℕ0
1918a1i 11 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 2 ∈ ℕ0)
20 nnnn0 11244 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
2119, 20nn0mulcld 11301 . . . . . . . . . 10 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℕ0)
22 1nn0 11253 . . . . . . . . . . 11 1 ∈ ℕ0
2322a1i 11 . . . . . . . . . 10 (𝑛 ∈ ℕ → 1 ∈ ℕ0)
2421, 23nn0addcld 11300 . . . . . . . . 9 (𝑛 ∈ ℕ → ((2 · 𝑛) + 1) ∈ ℕ0)
2524nn0red 11297 . . . . . . . 8 (𝑛 ∈ ℕ → ((2 · 𝑛) + 1) ∈ ℝ)
2621nn0red 11297 . . . . . . . 8 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℝ)
27 2cnd 11038 . . . . . . . . 9 (𝑛 ∈ ℕ → 2 ∈ ℂ)
28 nncn 10973 . . . . . . . . 9 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
2910a1i 11 . . . . . . . . 9 (𝑛 ∈ ℕ → 2 ≠ 0)
30 nnne0 10998 . . . . . . . . 9 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
3127, 28, 29, 30mulne0d 10624 . . . . . . . 8 (𝑛 ∈ ℕ → (2 · 𝑛) ≠ 0)
3225, 26, 31redivcld 10798 . . . . . . 7 (𝑛 ∈ ℕ → (((2 · 𝑛) + 1) / (2 · 𝑛)) ∈ ℝ)
338, 32fmpti 6340 . . . . . 6 𝐿:ℕ⟶ℝ
3433a1i 11 . . . . 5 (⊤ → 𝐿:ℕ⟶ℝ)
3534ffvelrnda 6316 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐿𝑘) ∈ ℝ)
362wallispilem3 39578 . . . . . . . . . 10 ((2 · 𝑛) ∈ ℕ0 → (𝐼‘(2 · 𝑛)) ∈ ℝ+)
3721, 36syl 17 . . . . . . . . 9 (𝑛 ∈ ℕ → (𝐼‘(2 · 𝑛)) ∈ ℝ+)
3837rpred 11816 . . . . . . . 8 (𝑛 ∈ ℕ → (𝐼‘(2 · 𝑛)) ∈ ℝ)
392wallispilem3 39578 . . . . . . . . 9 (((2 · 𝑛) + 1) ∈ ℕ0 → (𝐼‘((2 · 𝑛) + 1)) ∈ ℝ+)
4024, 39syl 17 . . . . . . . 8 (𝑛 ∈ ℕ → (𝐼‘((2 · 𝑛) + 1)) ∈ ℝ+)
4138, 40rerpdivcld 11847 . . . . . . 7 (𝑛 ∈ ℕ → ((𝐼‘(2 · 𝑛)) / (𝐼‘((2 · 𝑛) + 1))) ∈ ℝ)
423, 41fmpti 6340 . . . . . 6 𝐺:ℕ⟶ℝ
4342a1i 11 . . . . 5 (⊤ → 𝐺:ℕ⟶ℝ)
4443ffvelrnda 6316 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
4518a1i 11 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 2 ∈ ℕ0)
46 nnnn0 11244 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
4745, 46nn0mulcld 11301 . . . . . . . . . 10 (𝑘 ∈ ℕ → (2 · 𝑘) ∈ ℕ0)
482wallispilem3 39578 . . . . . . . . . 10 ((2 · 𝑘) ∈ ℕ0 → (𝐼‘(2 · 𝑘)) ∈ ℝ+)
4947, 48syl 17 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝐼‘(2 · 𝑘)) ∈ ℝ+)
5049rpred 11816 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐼‘(2 · 𝑘)) ∈ ℝ)
51 2nn 11130 . . . . . . . . . . . . 13 2 ∈ ℕ
5251a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 2 ∈ ℕ)
53 id 22 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ)
5452, 53nnmulcld 11013 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (2 · 𝑘) ∈ ℕ)
55 nnm1nn0 11279 . . . . . . . . . . 11 ((2 · 𝑘) ∈ ℕ → ((2 · 𝑘) − 1) ∈ ℕ0)
5654, 55syl 17 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((2 · 𝑘) − 1) ∈ ℕ0)
572wallispilem3 39578 . . . . . . . . . 10 (((2 · 𝑘) − 1) ∈ ℕ0 → (𝐼‘((2 · 𝑘) − 1)) ∈ ℝ+)
5856, 57syl 17 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝐼‘((2 · 𝑘) − 1)) ∈ ℝ+)
5958rpred 11816 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐼‘((2 · 𝑘) − 1)) ∈ ℝ)
6022a1i 11 . . . . . . . . . 10 (𝑘 ∈ ℕ → 1 ∈ ℕ0)
6147, 60nn0addcld 11300 . . . . . . . . 9 (𝑘 ∈ ℕ → ((2 · 𝑘) + 1) ∈ ℕ0)
622wallispilem3 39578 . . . . . . . . 9 (((2 · 𝑘) + 1) ∈ ℕ0 → (𝐼‘((2 · 𝑘) + 1)) ∈ ℝ+)
6361, 62syl 17 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐼‘((2 · 𝑘) + 1)) ∈ ℝ+)
64 2cnd 11038 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 2 ∈ ℂ)
65 nncn 10973 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
6664, 65mulcld 10005 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (2 · 𝑘) ∈ ℂ)
67 1cnd 10001 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 1 ∈ ℂ)
6866, 67npcand 10341 . . . . . . . . . 10 (𝑘 ∈ ℕ → (((2 · 𝑘) − 1) + 1) = (2 · 𝑘))
6968fveq2d 6154 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝐼‘(((2 · 𝑘) − 1) + 1)) = (𝐼‘(2 · 𝑘)))
702, 56wallispilem1 39576 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝐼‘(((2 · 𝑘) − 1) + 1)) ≤ (𝐼‘((2 · 𝑘) − 1)))
7169, 70eqbrtrrd 4642 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐼‘(2 · 𝑘)) ≤ (𝐼‘((2 · 𝑘) − 1)))
7250, 59, 63, 71lediv1dd 11874 . . . . . . 7 (𝑘 ∈ ℕ → ((𝐼‘(2 · 𝑘)) / (𝐼‘((2 · 𝑘) + 1))) ≤ ((𝐼‘((2 · 𝑘) − 1)) / (𝐼‘((2 · 𝑘) + 1))))
7366, 67addcld 10004 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((2 · 𝑘) + 1) ∈ ℂ)
7410a1i 11 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 2 ≠ 0)
75 nnne0 10998 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
7664, 65, 74, 75mulne0d 10624 . . . . . . . . . 10 (𝑘 ∈ ℕ → (2 · 𝑘) ≠ 0)
7773, 66, 76divcld 10746 . . . . . . . . 9 (𝑘 ∈ ℕ → (((2 · 𝑘) + 1) / (2 · 𝑘)) ∈ ℂ)
7863rpcnd 11818 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝐼‘((2 · 𝑘) + 1)) ∈ ℂ)
7963rpne0d 11821 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝐼‘((2 · 𝑘) + 1)) ≠ 0)
8077, 78, 79divcan4d 10752 . . . . . . . 8 (𝑘 ∈ ℕ → (((((2 · 𝑘) + 1) / (2 · 𝑘)) · (𝐼‘((2 · 𝑘) + 1))) / (𝐼‘((2 · 𝑘) + 1))) = (((2 · 𝑘) + 1) / (2 · 𝑘)))
81 2re 11035 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
8281a1i 11 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → 2 ∈ ℝ)
83 nnre 10972 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
8482, 83remulcld 10015 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (2 · 𝑘) ∈ ℝ)
85 1red 10000 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → 1 ∈ ℝ)
8684, 85readdcld 10014 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → ((2 · 𝑘) + 1) ∈ ℝ)
8745nn0ge0d 11299 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → 0 ≤ 2)
88 nnge1 10991 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → 1 ≤ 𝑘)
8982, 83, 87, 88lemulge11d 10906 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → 2 ≤ (2 · 𝑘))
9084ltp1d 10899 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (2 · 𝑘) < ((2 · 𝑘) + 1))
9182, 84, 86, 89, 90lelttrd 10140 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → 2 < ((2 · 𝑘) + 1))
9282, 86, 91ltled 10130 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 2 ≤ ((2 · 𝑘) + 1))
9345nn0zd 11424 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → 2 ∈ ℤ)
9461nn0zd 11424 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → ((2 · 𝑘) + 1) ∈ ℤ)
95 eluz 11645 . . . . . . . . . . . . . . 15 ((2 ∈ ℤ ∧ ((2 · 𝑘) + 1) ∈ ℤ) → (((2 · 𝑘) + 1) ∈ (ℤ‘2) ↔ 2 ≤ ((2 · 𝑘) + 1)))
9693, 94, 95syl2anc 692 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (((2 · 𝑘) + 1) ∈ (ℤ‘2) ↔ 2 ≤ ((2 · 𝑘) + 1)))
9792, 96mpbird 247 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → ((2 · 𝑘) + 1) ∈ (ℤ‘2))
982, 97itgsinexp 39464 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (𝐼‘((2 · 𝑘) + 1)) = (((((2 · 𝑘) + 1) − 1) / ((2 · 𝑘) + 1)) · (𝐼‘(((2 · 𝑘) + 1) − 2))))
9966, 67pncand 10338 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (((2 · 𝑘) + 1) − 1) = (2 · 𝑘))
10099oveq1d 6620 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → ((((2 · 𝑘) + 1) − 1) / ((2 · 𝑘) + 1)) = ((2 · 𝑘) / ((2 · 𝑘) + 1)))
101 1e2m1 11081 . . . . . . . . . . . . . . . . 17 1 = (2 − 1)
102101a1i 11 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → 1 = (2 − 1))
103102oveq2d 6621 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → ((2 · 𝑘) − 1) = ((2 · 𝑘) − (2 − 1)))
10466, 64, 67subsub3d 10367 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → ((2 · 𝑘) − (2 − 1)) = (((2 · 𝑘) + 1) − 2))
105103, 104eqtr2d 2661 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (((2 · 𝑘) + 1) − 2) = ((2 · 𝑘) − 1))
106105fveq2d 6154 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝐼‘(((2 · 𝑘) + 1) − 2)) = (𝐼‘((2 · 𝑘) − 1)))
107100, 106oveq12d 6623 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (((((2 · 𝑘) + 1) − 1) / ((2 · 𝑘) + 1)) · (𝐼‘(((2 · 𝑘) + 1) − 2))) = (((2 · 𝑘) / ((2 · 𝑘) + 1)) · (𝐼‘((2 · 𝑘) − 1))))
10898, 107eqtrd 2660 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (𝐼‘((2 · 𝑘) + 1)) = (((2 · 𝑘) / ((2 · 𝑘) + 1)) · (𝐼‘((2 · 𝑘) − 1))))
109108oveq2d 6621 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((((2 · 𝑘) + 1) / (2 · 𝑘)) · (𝐼‘((2 · 𝑘) + 1))) = ((((2 · 𝑘) + 1) / (2 · 𝑘)) · (((2 · 𝑘) / ((2 · 𝑘) + 1)) · (𝐼‘((2 · 𝑘) − 1)))))
11054peano2nnd 10982 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → ((2 · 𝑘) + 1) ∈ ℕ)
111110nnne0d 11010 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → ((2 · 𝑘) + 1) ≠ 0)
11266, 73, 111divcld 10746 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((2 · 𝑘) / ((2 · 𝑘) + 1)) ∈ ℂ)
11358rpcnd 11818 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (𝐼‘((2 · 𝑘) − 1)) ∈ ℂ)
11477, 112, 113mulassd 10008 . . . . . . . . . 10 (𝑘 ∈ ℕ → (((((2 · 𝑘) + 1) / (2 · 𝑘)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))) · (𝐼‘((2 · 𝑘) − 1))) = ((((2 · 𝑘) + 1) / (2 · 𝑘)) · (((2 · 𝑘) / ((2 · 𝑘) + 1)) · (𝐼‘((2 · 𝑘) − 1)))))
11573, 66, 111, 76divcan6d 10765 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → ((((2 · 𝑘) + 1) / (2 · 𝑘)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))) = 1)
116115oveq1d 6620 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (((((2 · 𝑘) + 1) / (2 · 𝑘)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))) · (𝐼‘((2 · 𝑘) − 1))) = (1 · (𝐼‘((2 · 𝑘) − 1))))
117113mulid2d 10003 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (1 · (𝐼‘((2 · 𝑘) − 1))) = (𝐼‘((2 · 𝑘) − 1)))
118116, 117eqtrd 2660 . . . . . . . . . 10 (𝑘 ∈ ℕ → (((((2 · 𝑘) + 1) / (2 · 𝑘)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))) · (𝐼‘((2 · 𝑘) − 1))) = (𝐼‘((2 · 𝑘) − 1)))
119109, 114, 1183eqtr2d 2666 . . . . . . . . 9 (𝑘 ∈ ℕ → ((((2 · 𝑘) + 1) / (2 · 𝑘)) · (𝐼‘((2 · 𝑘) + 1))) = (𝐼‘((2 · 𝑘) − 1)))
120119oveq1d 6620 . . . . . . . 8 (𝑘 ∈ ℕ → (((((2 · 𝑘) + 1) / (2 · 𝑘)) · (𝐼‘((2 · 𝑘) + 1))) / (𝐼‘((2 · 𝑘) + 1))) = ((𝐼‘((2 · 𝑘) − 1)) / (𝐼‘((2 · 𝑘) + 1))))
12180, 120eqtr3d 2662 . . . . . . 7 (𝑘 ∈ ℕ → (((2 · 𝑘) + 1) / (2 · 𝑘)) = ((𝐼‘((2 · 𝑘) − 1)) / (𝐼‘((2 · 𝑘) + 1))))
12272, 121breqtrrd 4646 . . . . . 6 (𝑘 ∈ ℕ → ((𝐼‘(2 · 𝑘)) / (𝐼‘((2 · 𝑘) + 1))) ≤ (((2 · 𝑘) + 1) / (2 · 𝑘)))
12349, 63rpdivcld 11833 . . . . . . 7 (𝑘 ∈ ℕ → ((𝐼‘(2 · 𝑘)) / (𝐼‘((2 · 𝑘) + 1))) ∈ ℝ+)
124 nfcv 2767 . . . . . . . 8 𝑛𝑘
125 nfmpt1 4712 . . . . . . . . . . 11 𝑛(𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)
1262, 125nfcxfr 2765 . . . . . . . . . 10 𝑛𝐼
127 nfcv 2767 . . . . . . . . . 10 𝑛(2 · 𝑘)
128126, 127nffv 6157 . . . . . . . . 9 𝑛(𝐼‘(2 · 𝑘))
129 nfcv 2767 . . . . . . . . 9 𝑛 /
130 nfcv 2767 . . . . . . . . . 10 𝑛((2 · 𝑘) + 1)
131126, 130nffv 6157 . . . . . . . . 9 𝑛(𝐼‘((2 · 𝑘) + 1))
132128, 129, 131nfov 6631 . . . . . . . 8 𝑛((𝐼‘(2 · 𝑘)) / (𝐼‘((2 · 𝑘) + 1)))
133 oveq2 6613 . . . . . . . . . 10 (𝑛 = 𝑘 → (2 · 𝑛) = (2 · 𝑘))
134133fveq2d 6154 . . . . . . . . 9 (𝑛 = 𝑘 → (𝐼‘(2 · 𝑛)) = (𝐼‘(2 · 𝑘)))
135133oveq1d 6620 . . . . . . . . . 10 (𝑛 = 𝑘 → ((2 · 𝑛) + 1) = ((2 · 𝑘) + 1))
136135fveq2d 6154 . . . . . . . . 9 (𝑛 = 𝑘 → (𝐼‘((2 · 𝑛) + 1)) = (𝐼‘((2 · 𝑘) + 1)))
137134, 136oveq12d 6623 . . . . . . . 8 (𝑛 = 𝑘 → ((𝐼‘(2 · 𝑛)) / (𝐼‘((2 · 𝑛) + 1))) = ((𝐼‘(2 · 𝑘)) / (𝐼‘((2 · 𝑘) + 1))))
138124, 132, 137, 3fvmptf 6258 . . . . . . 7 ((𝑘 ∈ ℕ ∧ ((𝐼‘(2 · 𝑘)) / (𝐼‘((2 · 𝑘) + 1))) ∈ ℝ+) → (𝐺𝑘) = ((𝐼‘(2 · 𝑘)) / (𝐼‘((2 · 𝑘) + 1))))
139123, 138mpdan 701 . . . . . 6 (𝑘 ∈ ℕ → (𝐺𝑘) = ((𝐼‘(2 · 𝑘)) / (𝐼‘((2 · 𝑘) + 1))))
1408a1i 11 . . . . . . 7 (𝑘 ∈ ℕ → 𝐿 = (𝑛 ∈ ℕ ↦ (((2 · 𝑛) + 1) / (2 · 𝑛))))
141 simpr 477 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑛 = 𝑘)
142141oveq2d 6621 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (2 · 𝑛) = (2 · 𝑘))
143142oveq1d 6620 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → ((2 · 𝑛) + 1) = ((2 · 𝑘) + 1))
144143, 142oveq12d 6623 . . . . . . 7 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (((2 · 𝑛) + 1) / (2 · 𝑛)) = (((2 · 𝑘) + 1) / (2 · 𝑘)))
145140, 144, 53, 77fvmptd 6246 . . . . . 6 (𝑘 ∈ ℕ → (𝐿𝑘) = (((2 · 𝑘) + 1) / (2 · 𝑘)))
146122, 139, 1453brtr4d 4650 . . . . 5 (𝑘 ∈ ℕ → (𝐺𝑘) ≤ (𝐿𝑘))
147146adantl 482 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ≤ (𝐿𝑘))
14878, 79dividd 10744 . . . . . . 7 (𝑘 ∈ ℕ → ((𝐼‘((2 · 𝑘) + 1)) / (𝐼‘((2 · 𝑘) + 1))) = 1)
14963rpred 11816 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐼‘((2 · 𝑘) + 1)) ∈ ℝ)
1502, 47wallispilem1 39576 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐼‘((2 · 𝑘) + 1)) ≤ (𝐼‘(2 · 𝑘)))
151149, 50, 63, 150lediv1dd 11874 . . . . . . 7 (𝑘 ∈ ℕ → ((𝐼‘((2 · 𝑘) + 1)) / (𝐼‘((2 · 𝑘) + 1))) ≤ ((𝐼‘(2 · 𝑘)) / (𝐼‘((2 · 𝑘) + 1))))
152148, 151eqbrtrrd 4642 . . . . . 6 (𝑘 ∈ ℕ → 1 ≤ ((𝐼‘(2 · 𝑘)) / (𝐼‘((2 · 𝑘) + 1))))
153152, 139breqtrrd 4646 . . . . 5 (𝑘 ∈ ℕ → 1 ≤ (𝐺𝑘))
154153adantl 482 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → 1 ≤ (𝐺𝑘))
1556, 7, 13, 17, 35, 44, 147, 154climsqz2 14301 . . 3 (⊤ → 𝐺 ⇝ 1)
156155trud 1490 . 2 𝐺 ⇝ 1
1575, 156eqbrtrri 4641 1 𝐻 ⇝ 1
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1480  wtru 1481  wcel 1992  wne 2796  Vcvv 3191   class class class wbr 4618  cmpt 4678  wf 5846  cfv 5850  (class class class)co 6605  cc 9879  cr 9880  0cc0 9881  1c1 9882   + caddc 9884   · cmul 9886  cle 10020  cmin 10211   / cdiv 10629  cn 10965  2c2 11015  0cn0 11237  cz 11322  cuz 11631  +crp 11776  (,)cioo 12114  seqcseq 12738  cexp 12797  cli 14144  sincsin 14714  πcpi 14717  citg 23288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-inf2 8483  ax-cc 9202  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959  ax-addf 9960  ax-mulf 9961
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-disj 4589  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-isom 5859  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-of 6851  df-ofr 6852  df-om 7014  df-1st 7116  df-2nd 7117  df-supp 7242  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-2o 7507  df-oadd 7510  df-omul 7511  df-er 7688  df-map 7805  df-pm 7806  df-ixp 7854  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-fsupp 8221  df-fi 8262  df-sup 8293  df-inf 8294  df-oi 8360  df-card 8710  df-acn 8713  df-cda 8935  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-3 11025  df-4 11026  df-5 11027  df-6 11028  df-7 11029  df-8 11030  df-9 11031  df-n0 11238  df-z 11323  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12118  df-ioc 12119  df-ico 12120  df-icc 12121  df-fz 12266  df-fzo 12404  df-fl 12530  df-mod 12606  df-seq 12739  df-exp 12798  df-fac 12998  df-bc 13027  df-hash 13055  df-shft 13736  df-cj 13768  df-re 13769  df-im 13770  df-sqrt 13904  df-abs 13905  df-limsup 14131  df-clim 14148  df-rlim 14149  df-sum 14346  df-ef 14718  df-sin 14720  df-cos 14721  df-pi 14723  df-struct 15778  df-ndx 15779  df-slot 15780  df-base 15781  df-sets 15782  df-ress 15783  df-plusg 15870  df-mulr 15871  df-starv 15872  df-sca 15873  df-vsca 15874  df-ip 15875  df-tset 15876  df-ple 15877  df-ds 15880  df-unif 15881  df-hom 15882  df-cco 15883  df-rest 15999  df-topn 16000  df-0g 16018  df-gsum 16019  df-topgen 16020  df-pt 16021  df-prds 16024  df-xrs 16078  df-qtop 16083  df-imas 16084  df-xps 16086  df-mre 16162  df-mrc 16163  df-acs 16165  df-mgm 17158  df-sgrp 17200  df-mnd 17211  df-submnd 17252  df-mulg 17457  df-cntz 17666  df-cmn 18111  df-psmet 19652  df-xmet 19653  df-met 19654  df-bl 19655  df-mopn 19656  df-fbas 19657  df-fg 19658  df-cnfld 19661  df-top 20616  df-bases 20617  df-topon 20618  df-topsp 20619  df-cld 20728  df-ntr 20729  df-cls 20730  df-nei 20807  df-lp 20845  df-perf 20846  df-cn 20936  df-cnp 20937  df-haus 21024  df-cmp 21095  df-tx 21270  df-hmeo 21463  df-fil 21555  df-fm 21647  df-flim 21648  df-flf 21649  df-xms 22030  df-ms 22031  df-tms 22032  df-cncf 22584  df-ovol 23135  df-vol 23136  df-mbf 23289  df-itg1 23290  df-itg2 23291  df-ibl 23292  df-itg 23293  df-0p 23338  df-limc 23531  df-dv 23532
This theorem is referenced by:  wallispi  39581
  Copyright terms: Public domain W3C validator