MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wdomac Structured version   Visualization version   GIF version

Theorem wdomac 9293
Description: When assuming AC, weak and usual dominance coincide. It is not known if this is an AC equivalent. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.)
Assertion
Ref Expression
wdomac (𝑋* 𝑌𝑋𝑌)

Proof of Theorem wdomac
StepHypRef Expression
1 relwdom 8415 . . 3 Rel ≼*
21brrelex2i 5119 . 2 (𝑋* 𝑌𝑌 ∈ V)
3 reldom 7905 . . 3 Rel ≼
43brrelex2i 5119 . 2 (𝑋𝑌𝑌 ∈ V)
5 numth3 9236 . . 3 (𝑌 ∈ V → 𝑌 ∈ dom card)
6 wdomnumr 8831 . . 3 (𝑌 ∈ dom card → (𝑋* 𝑌𝑋𝑌))
75, 6syl 17 . 2 (𝑌 ∈ V → (𝑋* 𝑌𝑋𝑌))
82, 4, 7pm5.21nii 368 1 (𝑋* 𝑌𝑋𝑌)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wcel 1987  Vcvv 3186   class class class wbr 4613  dom cdm 5074  cdom 7897  * cwdom 8406  cardccrd 8705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-ac2 9229
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-wdom 8408  df-card 8709  df-acn 8712  df-ac 8883
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator