Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ween Structured version   Visualization version   GIF version

Theorem ween 8809
 Description: A set is numerable iff it can be well-ordered. (Contributed by Mario Carneiro, 5-Jan-2013.)
Assertion
Ref Expression
ween (𝐴 ∈ dom card ↔ ∃𝑟 𝑟 We 𝐴)
Distinct variable group:   𝐴,𝑟

Proof of Theorem ween
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfac8b 8805 . 2 (𝐴 ∈ dom card → ∃𝑟 𝑟 We 𝐴)
2 weso 5070 . . . . 5 (𝑟 We 𝐴𝑟 Or 𝐴)
3 vex 3192 . . . . 5 𝑟 ∈ V
4 soex 7063 . . . . 5 ((𝑟 Or 𝐴𝑟 ∈ V) → 𝐴 ∈ V)
52, 3, 4sylancl 693 . . . 4 (𝑟 We 𝐴𝐴 ∈ V)
65exlimiv 1855 . . 3 (∃𝑟 𝑟 We 𝐴𝐴 ∈ V)
7 unipw 4884 . . . . . 6 𝒫 𝐴 = 𝐴
8 weeq2 5068 . . . . . 6 ( 𝒫 𝐴 = 𝐴 → (𝑟 We 𝒫 𝐴𝑟 We 𝐴))
97, 8ax-mp 5 . . . . 5 (𝑟 We 𝒫 𝐴𝑟 We 𝐴)
109exbii 1771 . . . 4 (∃𝑟 𝑟 We 𝒫 𝐴 ↔ ∃𝑟 𝑟 We 𝐴)
1110biimpri 218 . . 3 (∃𝑟 𝑟 We 𝐴 → ∃𝑟 𝑟 We 𝒫 𝐴)
12 pwexg 4815 . . . . 5 (𝐴 ∈ V → 𝒫 𝐴 ∈ V)
13 dfac8c 8807 . . . . 5 (𝒫 𝐴 ∈ V → (∃𝑟 𝑟 We 𝒫 𝐴 → ∃𝑓𝑥 ∈ 𝒫 𝐴(𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)))
1412, 13syl 17 . . . 4 (𝐴 ∈ V → (∃𝑟 𝑟 We 𝒫 𝐴 → ∃𝑓𝑥 ∈ 𝒫 𝐴(𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)))
15 dfac8a 8804 . . . 4 (𝐴 ∈ V → (∃𝑓𝑥 ∈ 𝒫 𝐴(𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥) → 𝐴 ∈ dom card))
1614, 15syld 47 . . 3 (𝐴 ∈ V → (∃𝑟 𝑟 We 𝒫 𝐴𝐴 ∈ dom card))
176, 11, 16sylc 65 . 2 (∃𝑟 𝑟 We 𝐴𝐴 ∈ dom card)
181, 17impbii 199 1 (𝐴 ∈ dom card ↔ ∃𝑟 𝑟 We 𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   = wceq 1480  ∃wex 1701   ∈ wcel 1987   ≠ wne 2790  ∀wral 2907  Vcvv 3189  ∅c0 3896  𝒫 cpw 4135  ∪ cuni 4407   Or wor 4999   We wwe 5037  dom cdm 5079  ‘cfv 5852  cardccrd 8712 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-wrecs 7359  df-recs 7420  df-en 7907  df-card 8716 This theorem is referenced by:  ondomen  8811  dfac10  8910  zorn2lem7  9275  fpwwe  9419  canthnumlem  9421  canthp1lem2  9426  pwfseqlem4a  9434  pwfseqlem4  9435  fin2so  33055
 Copyright terms: Public domain W3C validator