MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  weinxp Structured version   Visualization version   GIF version

Theorem weinxp 5099
Description: Intersection of well-ordering with Cartesian product of its field. (Contributed by NM, 9-Mar-1997.) (Revised by Mario Carneiro, 10-Jul-2014.)
Assertion
Ref Expression
weinxp (𝑅 We 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) We 𝐴)

Proof of Theorem weinxp
StepHypRef Expression
1 frinxp 5097 . . 3 (𝑅 Fr 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Fr 𝐴)
2 soinxp 5096 . . 3 (𝑅 Or 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Or 𝐴)
31, 2anbi12i 728 . 2 ((𝑅 Fr 𝐴𝑅 Or 𝐴) ↔ ((𝑅 ∩ (𝐴 × 𝐴)) Fr 𝐴 ∧ (𝑅 ∩ (𝐴 × 𝐴)) Or 𝐴))
4 df-we 4989 . 2 (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Or 𝐴))
5 df-we 4989 . 2 ((𝑅 ∩ (𝐴 × 𝐴)) We 𝐴 ↔ ((𝑅 ∩ (𝐴 × 𝐴)) Fr 𝐴 ∧ (𝑅 ∩ (𝐴 × 𝐴)) Or 𝐴))
63, 4, 53bitr4i 290 1 (𝑅 We 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) We 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 194  wa 382  cin 3538   Or wor 4948   Fr wfr 4984   We wwe 4986   × cxp 5026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pr 4828
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-sn 4125  df-pr 4127  df-op 4131  df-br 4578  df-opab 4638  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034
This theorem is referenced by:  wemapwe  8454  infxpenlem  8696  dfac8b  8714  ac10ct  8717  canthwelem  9328  ltbwe  19239  vitali  23105  fin2so  32369  dnwech  36439  aomclem5  36449
  Copyright terms: Public domain W3C validator