Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  wemaplem2 Structured version   Visualization version   GIF version

Theorem wemaplem2 8404
 Description: Lemma for wemapso 8408. Transitivity. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Hypotheses
Ref Expression
wemapso.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
wemaplem2.a (𝜑𝐴 ∈ V)
wemaplem2.p (𝜑𝑃 ∈ (𝐵𝑚 𝐴))
wemaplem2.x (𝜑𝑋 ∈ (𝐵𝑚 𝐴))
wemaplem2.q (𝜑𝑄 ∈ (𝐵𝑚 𝐴))
wemaplem2.r (𝜑𝑅 Or 𝐴)
wemaplem2.s (𝜑𝑆 Po 𝐵)
wemaplem2.px1 (𝜑𝑎𝐴)
wemaplem2.px2 (𝜑 → (𝑃𝑎)𝑆(𝑋𝑎))
wemaplem2.px3 (𝜑 → ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐)))
wemaplem2.xq1 (𝜑𝑏𝐴)
wemaplem2.xq2 (𝜑 → (𝑋𝑏)𝑆(𝑄𝑏))
wemaplem2.xq3 (𝜑 → ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐)))
Assertion
Ref Expression
wemaplem2 (𝜑𝑃𝑇𝑄)
Distinct variable groups:   𝑎,𝑏,𝑐,𝑥,𝐵   𝑇,𝑎,𝑏,𝑐   𝑤,𝑎,𝑦,𝑧,𝑋,𝑏,𝑐,𝑥   𝐴,𝑎,𝑏,𝑐,𝑤,𝑥,𝑦,𝑧   𝑃,𝑎,𝑏,𝑐,𝑤,𝑥,𝑦,𝑧   𝑄,𝑎,𝑏,𝑐,𝑤,𝑥,𝑦,𝑧   𝑅,𝑎,𝑏,𝑐,𝑤,𝑥,𝑦,𝑧   𝑆,𝑎,𝑏,𝑐,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑎,𝑏,𝑐)   𝐵(𝑦,𝑧,𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem wemaplem2
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 wemaplem2.px1 . . . 4 (𝜑𝑎𝐴)
2 wemaplem2.xq1 . . . 4 (𝜑𝑏𝐴)
31, 2ifcld 4108 . . 3 (𝜑 → if(𝑎𝑅𝑏, 𝑎, 𝑏) ∈ 𝐴)
4 wemaplem2.px2 . . . . . . 7 (𝜑 → (𝑃𝑎)𝑆(𝑋𝑎))
54adantr 481 . . . . . 6 ((𝜑𝑎𝑅𝑏) → (𝑃𝑎)𝑆(𝑋𝑎))
6 wemaplem2.xq3 . . . . . . . 8 (𝜑 → ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐)))
7 breq1 4621 . . . . . . . . . 10 (𝑐 = 𝑎 → (𝑐𝑅𝑏𝑎𝑅𝑏))
8 fveq2 6153 . . . . . . . . . . 11 (𝑐 = 𝑎 → (𝑋𝑐) = (𝑋𝑎))
9 fveq2 6153 . . . . . . . . . . 11 (𝑐 = 𝑎 → (𝑄𝑐) = (𝑄𝑎))
108, 9eqeq12d 2636 . . . . . . . . . 10 (𝑐 = 𝑎 → ((𝑋𝑐) = (𝑄𝑐) ↔ (𝑋𝑎) = (𝑄𝑎)))
117, 10imbi12d 334 . . . . . . . . 9 (𝑐 = 𝑎 → ((𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐)) ↔ (𝑎𝑅𝑏 → (𝑋𝑎) = (𝑄𝑎))))
1211rspcva 3296 . . . . . . . 8 ((𝑎𝐴 ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))) → (𝑎𝑅𝑏 → (𝑋𝑎) = (𝑄𝑎)))
131, 6, 12syl2anc 692 . . . . . . 7 (𝜑 → (𝑎𝑅𝑏 → (𝑋𝑎) = (𝑄𝑎)))
1413imp 445 . . . . . 6 ((𝜑𝑎𝑅𝑏) → (𝑋𝑎) = (𝑄𝑎))
155, 14breqtrd 4644 . . . . 5 ((𝜑𝑎𝑅𝑏) → (𝑃𝑎)𝑆(𝑄𝑎))
16 iftrue 4069 . . . . . . . 8 (𝑎𝑅𝑏 → if(𝑎𝑅𝑏, 𝑎, 𝑏) = 𝑎)
1716fveq2d 6157 . . . . . . 7 (𝑎𝑅𝑏 → (𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) = (𝑃𝑎))
1816fveq2d 6157 . . . . . . 7 (𝑎𝑅𝑏 → (𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) = (𝑄𝑎))
1917, 18breq12d 4631 . . . . . 6 (𝑎𝑅𝑏 → ((𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) ↔ (𝑃𝑎)𝑆(𝑄𝑎)))
2019adantl 482 . . . . 5 ((𝜑𝑎𝑅𝑏) → ((𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) ↔ (𝑃𝑎)𝑆(𝑄𝑎)))
2115, 20mpbird 247 . . . 4 ((𝜑𝑎𝑅𝑏) → (𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)))
22 wemaplem2.s . . . . . . 7 (𝜑𝑆 Po 𝐵)
2322adantr 481 . . . . . 6 ((𝜑𝑎 = 𝑏) → 𝑆 Po 𝐵)
24 wemaplem2.p . . . . . . . . . 10 (𝜑𝑃 ∈ (𝐵𝑚 𝐴))
25 elmapi 7831 . . . . . . . . . 10 (𝑃 ∈ (𝐵𝑚 𝐴) → 𝑃:𝐴𝐵)
2624, 25syl 17 . . . . . . . . 9 (𝜑𝑃:𝐴𝐵)
2726, 2ffvelrnd 6321 . . . . . . . 8 (𝜑 → (𝑃𝑏) ∈ 𝐵)
28 wemaplem2.x . . . . . . . . . 10 (𝜑𝑋 ∈ (𝐵𝑚 𝐴))
29 elmapi 7831 . . . . . . . . . 10 (𝑋 ∈ (𝐵𝑚 𝐴) → 𝑋:𝐴𝐵)
3028, 29syl 17 . . . . . . . . 9 (𝜑𝑋:𝐴𝐵)
3130, 2ffvelrnd 6321 . . . . . . . 8 (𝜑 → (𝑋𝑏) ∈ 𝐵)
32 wemaplem2.q . . . . . . . . . 10 (𝜑𝑄 ∈ (𝐵𝑚 𝐴))
33 elmapi 7831 . . . . . . . . . 10 (𝑄 ∈ (𝐵𝑚 𝐴) → 𝑄:𝐴𝐵)
3432, 33syl 17 . . . . . . . . 9 (𝜑𝑄:𝐴𝐵)
3534, 2ffvelrnd 6321 . . . . . . . 8 (𝜑 → (𝑄𝑏) ∈ 𝐵)
3627, 31, 353jca 1240 . . . . . . 7 (𝜑 → ((𝑃𝑏) ∈ 𝐵 ∧ (𝑋𝑏) ∈ 𝐵 ∧ (𝑄𝑏) ∈ 𝐵))
3736adantr 481 . . . . . 6 ((𝜑𝑎 = 𝑏) → ((𝑃𝑏) ∈ 𝐵 ∧ (𝑋𝑏) ∈ 𝐵 ∧ (𝑄𝑏) ∈ 𝐵))
38 fveq2 6153 . . . . . . . . 9 (𝑎 = 𝑏 → (𝑃𝑎) = (𝑃𝑏))
39 fveq2 6153 . . . . . . . . 9 (𝑎 = 𝑏 → (𝑋𝑎) = (𝑋𝑏))
4038, 39breq12d 4631 . . . . . . . 8 (𝑎 = 𝑏 → ((𝑃𝑎)𝑆(𝑋𝑎) ↔ (𝑃𝑏)𝑆(𝑋𝑏)))
414, 40syl5ibcom 235 . . . . . . 7 (𝜑 → (𝑎 = 𝑏 → (𝑃𝑏)𝑆(𝑋𝑏)))
4241imp 445 . . . . . 6 ((𝜑𝑎 = 𝑏) → (𝑃𝑏)𝑆(𝑋𝑏))
43 wemaplem2.xq2 . . . . . . 7 (𝜑 → (𝑋𝑏)𝑆(𝑄𝑏))
4443adantr 481 . . . . . 6 ((𝜑𝑎 = 𝑏) → (𝑋𝑏)𝑆(𝑄𝑏))
45 potr 5012 . . . . . . 7 ((𝑆 Po 𝐵 ∧ ((𝑃𝑏) ∈ 𝐵 ∧ (𝑋𝑏) ∈ 𝐵 ∧ (𝑄𝑏) ∈ 𝐵)) → (((𝑃𝑏)𝑆(𝑋𝑏) ∧ (𝑋𝑏)𝑆(𝑄𝑏)) → (𝑃𝑏)𝑆(𝑄𝑏)))
4645imp 445 . . . . . 6 (((𝑆 Po 𝐵 ∧ ((𝑃𝑏) ∈ 𝐵 ∧ (𝑋𝑏) ∈ 𝐵 ∧ (𝑄𝑏) ∈ 𝐵)) ∧ ((𝑃𝑏)𝑆(𝑋𝑏) ∧ (𝑋𝑏)𝑆(𝑄𝑏))) → (𝑃𝑏)𝑆(𝑄𝑏))
4723, 37, 42, 44, 46syl22anc 1324 . . . . 5 ((𝜑𝑎 = 𝑏) → (𝑃𝑏)𝑆(𝑄𝑏))
48 ifeq1 4067 . . . . . . . . 9 (𝑎 = 𝑏 → if(𝑎𝑅𝑏, 𝑎, 𝑏) = if(𝑎𝑅𝑏, 𝑏, 𝑏))
49 ifid 4102 . . . . . . . . 9 if(𝑎𝑅𝑏, 𝑏, 𝑏) = 𝑏
5048, 49syl6eq 2671 . . . . . . . 8 (𝑎 = 𝑏 → if(𝑎𝑅𝑏, 𝑎, 𝑏) = 𝑏)
5150fveq2d 6157 . . . . . . 7 (𝑎 = 𝑏 → (𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) = (𝑃𝑏))
5250fveq2d 6157 . . . . . . 7 (𝑎 = 𝑏 → (𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) = (𝑄𝑏))
5351, 52breq12d 4631 . . . . . 6 (𝑎 = 𝑏 → ((𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) ↔ (𝑃𝑏)𝑆(𝑄𝑏)))
5453adantl 482 . . . . 5 ((𝜑𝑎 = 𝑏) → ((𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) ↔ (𝑃𝑏)𝑆(𝑄𝑏)))
5547, 54mpbird 247 . . . 4 ((𝜑𝑎 = 𝑏) → (𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)))
56 wemaplem2.px3 . . . . . . . 8 (𝜑 → ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐)))
57 breq1 4621 . . . . . . . . . 10 (𝑐 = 𝑏 → (𝑐𝑅𝑎𝑏𝑅𝑎))
58 fveq2 6153 . . . . . . . . . . 11 (𝑐 = 𝑏 → (𝑃𝑐) = (𝑃𝑏))
59 fveq2 6153 . . . . . . . . . . 11 (𝑐 = 𝑏 → (𝑋𝑐) = (𝑋𝑏))
6058, 59eqeq12d 2636 . . . . . . . . . 10 (𝑐 = 𝑏 → ((𝑃𝑐) = (𝑋𝑐) ↔ (𝑃𝑏) = (𝑋𝑏)))
6157, 60imbi12d 334 . . . . . . . . 9 (𝑐 = 𝑏 → ((𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐)) ↔ (𝑏𝑅𝑎 → (𝑃𝑏) = (𝑋𝑏))))
6261rspcva 3296 . . . . . . . 8 ((𝑏𝐴 ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐))) → (𝑏𝑅𝑎 → (𝑃𝑏) = (𝑋𝑏)))
632, 56, 62syl2anc 692 . . . . . . 7 (𝜑 → (𝑏𝑅𝑎 → (𝑃𝑏) = (𝑋𝑏)))
6463imp 445 . . . . . 6 ((𝜑𝑏𝑅𝑎) → (𝑃𝑏) = (𝑋𝑏))
6543adantr 481 . . . . . 6 ((𝜑𝑏𝑅𝑎) → (𝑋𝑏)𝑆(𝑄𝑏))
6664, 65eqbrtrd 4640 . . . . 5 ((𝜑𝑏𝑅𝑎) → (𝑃𝑏)𝑆(𝑄𝑏))
67 wemaplem2.r . . . . . . . . 9 (𝜑𝑅 Or 𝐴)
68 sopo 5017 . . . . . . . . 9 (𝑅 Or 𝐴𝑅 Po 𝐴)
6967, 68syl 17 . . . . . . . 8 (𝜑𝑅 Po 𝐴)
70 po2nr 5013 . . . . . . . 8 ((𝑅 Po 𝐴 ∧ (𝑏𝐴𝑎𝐴)) → ¬ (𝑏𝑅𝑎𝑎𝑅𝑏))
7169, 2, 1, 70syl12anc 1321 . . . . . . 7 (𝜑 → ¬ (𝑏𝑅𝑎𝑎𝑅𝑏))
72 nan 603 . . . . . . 7 ((𝜑 → ¬ (𝑏𝑅𝑎𝑎𝑅𝑏)) ↔ ((𝜑𝑏𝑅𝑎) → ¬ 𝑎𝑅𝑏))
7371, 72mpbi 220 . . . . . 6 ((𝜑𝑏𝑅𝑎) → ¬ 𝑎𝑅𝑏)
74 iffalse 4072 . . . . . . . 8 𝑎𝑅𝑏 → if(𝑎𝑅𝑏, 𝑎, 𝑏) = 𝑏)
7574fveq2d 6157 . . . . . . 7 𝑎𝑅𝑏 → (𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) = (𝑃𝑏))
7674fveq2d 6157 . . . . . . 7 𝑎𝑅𝑏 → (𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) = (𝑄𝑏))
7775, 76breq12d 4631 . . . . . 6 𝑎𝑅𝑏 → ((𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) ↔ (𝑃𝑏)𝑆(𝑄𝑏)))
7873, 77syl 17 . . . . 5 ((𝜑𝑏𝑅𝑎) → ((𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) ↔ (𝑃𝑏)𝑆(𝑄𝑏)))
7966, 78mpbird 247 . . . 4 ((𝜑𝑏𝑅𝑎) → (𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)))
80 solin 5023 . . . . 5 ((𝑅 Or 𝐴 ∧ (𝑎𝐴𝑏𝐴)) → (𝑎𝑅𝑏𝑎 = 𝑏𝑏𝑅𝑎))
8167, 1, 2, 80syl12anc 1321 . . . 4 (𝜑 → (𝑎𝑅𝑏𝑎 = 𝑏𝑏𝑅𝑎))
8221, 55, 79, 81mpjao3dan 1392 . . 3 (𝜑 → (𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)))
83 r19.26 3058 . . . . 5 (∀𝑐𝐴 ((𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐)) ∧ (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))) ↔ (∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐)) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))))
8456, 6, 83sylanbrc 697 . . . 4 (𝜑 → ∀𝑐𝐴 ((𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐)) ∧ (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))))
8567, 1, 23jca 1240 . . . . 5 (𝜑 → (𝑅 Or 𝐴𝑎𝐴𝑏𝐴))
86 prth 594 . . . . . . 7 (((𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐)) ∧ (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))) → ((𝑐𝑅𝑎𝑐𝑅𝑏) → ((𝑃𝑐) = (𝑋𝑐) ∧ (𝑋𝑐) = (𝑄𝑐))))
87 eqtr 2640 . . . . . . 7 (((𝑃𝑐) = (𝑋𝑐) ∧ (𝑋𝑐) = (𝑄𝑐)) → (𝑃𝑐) = (𝑄𝑐))
8886, 87syl6 35 . . . . . 6 (((𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐)) ∧ (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))) → ((𝑐𝑅𝑎𝑐𝑅𝑏) → (𝑃𝑐) = (𝑄𝑐)))
8988ralimi 2947 . . . . 5 (∀𝑐𝐴 ((𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐)) ∧ (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))) → ∀𝑐𝐴 ((𝑐𝑅𝑎𝑐𝑅𝑏) → (𝑃𝑐) = (𝑄𝑐)))
90 simpl1 1062 . . . . . . . . 9 (((𝑅 Or 𝐴𝑎𝐴𝑏𝐴) ∧ 𝑐𝐴) → 𝑅 Or 𝐴)
91 simpr 477 . . . . . . . . 9 (((𝑅 Or 𝐴𝑎𝐴𝑏𝐴) ∧ 𝑐𝐴) → 𝑐𝐴)
92 simpl2 1063 . . . . . . . . 9 (((𝑅 Or 𝐴𝑎𝐴𝑏𝐴) ∧ 𝑐𝐴) → 𝑎𝐴)
93 simpl3 1064 . . . . . . . . 9 (((𝑅 Or 𝐴𝑎𝐴𝑏𝐴) ∧ 𝑐𝐴) → 𝑏𝐴)
94 soltmin 5496 . . . . . . . . 9 ((𝑅 Or 𝐴 ∧ (𝑐𝐴𝑎𝐴𝑏𝐴)) → (𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏) ↔ (𝑐𝑅𝑎𝑐𝑅𝑏)))
9590, 91, 92, 93, 94syl13anc 1325 . . . . . . . 8 (((𝑅 Or 𝐴𝑎𝐴𝑏𝐴) ∧ 𝑐𝐴) → (𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏) ↔ (𝑐𝑅𝑎𝑐𝑅𝑏)))
9695biimpd 219 . . . . . . 7 (((𝑅 Or 𝐴𝑎𝐴𝑏𝐴) ∧ 𝑐𝐴) → (𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑐𝑅𝑎𝑐𝑅𝑏)))
9796imim1d 82 . . . . . 6 (((𝑅 Or 𝐴𝑎𝐴𝑏𝐴) ∧ 𝑐𝐴) → (((𝑐𝑅𝑎𝑐𝑅𝑏) → (𝑃𝑐) = (𝑄𝑐)) → (𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑃𝑐) = (𝑄𝑐))))
9897ralimdva 2957 . . . . 5 ((𝑅 Or 𝐴𝑎𝐴𝑏𝐴) → (∀𝑐𝐴 ((𝑐𝑅𝑎𝑐𝑅𝑏) → (𝑃𝑐) = (𝑄𝑐)) → ∀𝑐𝐴 (𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑃𝑐) = (𝑄𝑐))))
9985, 89, 98syl2im 40 . . . 4 (𝜑 → (∀𝑐𝐴 ((𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐)) ∧ (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))) → ∀𝑐𝐴 (𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑃𝑐) = (𝑄𝑐))))
10084, 99mpd 15 . . 3 (𝜑 → ∀𝑐𝐴 (𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑃𝑐) = (𝑄𝑐)))
101 fveq2 6153 . . . . . 6 (𝑑 = if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑃𝑑) = (𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏)))
102 fveq2 6153 . . . . . 6 (𝑑 = if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑄𝑑) = (𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)))
103101, 102breq12d 4631 . . . . 5 (𝑑 = if(𝑎𝑅𝑏, 𝑎, 𝑏) → ((𝑃𝑑)𝑆(𝑄𝑑) ↔ (𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏))))
104 breq2 4622 . . . . . . 7 (𝑑 = if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑐𝑅𝑑𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏)))
105104imbi1d 331 . . . . . 6 (𝑑 = if(𝑎𝑅𝑏, 𝑎, 𝑏) → ((𝑐𝑅𝑑 → (𝑃𝑐) = (𝑄𝑐)) ↔ (𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑃𝑐) = (𝑄𝑐))))
106105ralbidv 2981 . . . . 5 (𝑑 = if(𝑎𝑅𝑏, 𝑎, 𝑏) → (∀𝑐𝐴 (𝑐𝑅𝑑 → (𝑃𝑐) = (𝑄𝑐)) ↔ ∀𝑐𝐴 (𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑃𝑐) = (𝑄𝑐))))
107103, 106anbi12d 746 . . . 4 (𝑑 = if(𝑎𝑅𝑏, 𝑎, 𝑏) → (((𝑃𝑑)𝑆(𝑄𝑑) ∧ ∀𝑐𝐴 (𝑐𝑅𝑑 → (𝑃𝑐) = (𝑄𝑐))) ↔ ((𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) ∧ ∀𝑐𝐴 (𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑃𝑐) = (𝑄𝑐)))))
108107rspcev 3298 . . 3 ((if(𝑎𝑅𝑏, 𝑎, 𝑏) ∈ 𝐴 ∧ ((𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) ∧ ∀𝑐𝐴 (𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑃𝑐) = (𝑄𝑐)))) → ∃𝑑𝐴 ((𝑃𝑑)𝑆(𝑄𝑑) ∧ ∀𝑐𝐴 (𝑐𝑅𝑑 → (𝑃𝑐) = (𝑄𝑐))))
1093, 82, 100, 108syl12anc 1321 . 2 (𝜑 → ∃𝑑𝐴 ((𝑃𝑑)𝑆(𝑄𝑑) ∧ ∀𝑐𝐴 (𝑐𝑅𝑑 → (𝑃𝑐) = (𝑄𝑐))))
110 wemapso.t . . . 4 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
111110wemaplem1 8403 . . 3 ((𝑃 ∈ (𝐵𝑚 𝐴) ∧ 𝑄 ∈ (𝐵𝑚 𝐴)) → (𝑃𝑇𝑄 ↔ ∃𝑑𝐴 ((𝑃𝑑)𝑆(𝑄𝑑) ∧ ∀𝑐𝐴 (𝑐𝑅𝑑 → (𝑃𝑐) = (𝑄𝑐)))))
11224, 32, 111syl2anc 692 . 2 (𝜑 → (𝑃𝑇𝑄 ↔ ∃𝑑𝐴 ((𝑃𝑑)𝑆(𝑄𝑑) ∧ ∀𝑐𝐴 (𝑐𝑅𝑑 → (𝑃𝑐) = (𝑄𝑐)))))
113109, 112mpbird 247 1 (𝜑𝑃𝑇𝑄)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 384   ∨ w3o 1035   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987  ∀wral 2907  ∃wrex 2908  Vcvv 3189  ifcif 4063   class class class wbr 4618  {copab 4677   Po wpo 4998   Or wor 4999  ⟶wf 5848  ‘cfv 5852  (class class class)co 6610   ↑𝑚 cmap 7809 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-po 5000  df-so 5001  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-fv 5860  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-1st 7120  df-2nd 7121  df-map 7811 This theorem is referenced by:  wemaplem3  8405
 Copyright terms: Public domain W3C validator