MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wemapso Structured version   Visualization version   GIF version

Theorem wemapso 9009
Description: Construct lexicographic order on a function space based on a well-ordering of the indices and a total ordering of the values. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by Mario Carneiro, 8-Feb-2015.)
Hypothesis
Ref Expression
wemapso.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
Assertion
Ref Expression
wemapso ((𝐴𝑉𝑅 We 𝐴𝑆 Or 𝐵) → 𝑇 Or (𝐵m 𝐴))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝑅,𝑥,𝑦,𝑧   𝑤,𝑆,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑦,𝑧,𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)   𝑉(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem wemapso
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3513 . 2 (𝐴𝑉𝐴 ∈ V)
2 wemapso.t . . 3 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
3 ssid 3989 . . 3 (𝐵m 𝐴) ⊆ (𝐵m 𝐴)
4 simp1 1132 . . 3 ((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) → 𝐴 ∈ V)
5 weso 5541 . . . 4 (𝑅 We 𝐴𝑅 Or 𝐴)
653ad2ant2 1130 . . 3 ((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) → 𝑅 Or 𝐴)
7 simp3 1134 . . 3 ((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) → 𝑆 Or 𝐵)
8 simpl1 1187 . . . . 5 (((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴)) ∧ 𝑎𝑏)) → 𝐴 ∈ V)
9 difss 4108 . . . . . . 7 (𝑎𝑏) ⊆ 𝑎
10 dmss 5766 . . . . . . 7 ((𝑎𝑏) ⊆ 𝑎 → dom (𝑎𝑏) ⊆ dom 𝑎)
119, 10ax-mp 5 . . . . . 6 dom (𝑎𝑏) ⊆ dom 𝑎
12 simprll 777 . . . . . . 7 (((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴)) ∧ 𝑎𝑏)) → 𝑎 ∈ (𝐵m 𝐴))
13 elmapi 8422 . . . . . . 7 (𝑎 ∈ (𝐵m 𝐴) → 𝑎:𝐴𝐵)
1412, 13syl 17 . . . . . 6 (((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴)) ∧ 𝑎𝑏)) → 𝑎:𝐴𝐵)
1511, 14fssdm 6525 . . . . 5 (((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴)) ∧ 𝑎𝑏)) → dom (𝑎𝑏) ⊆ 𝐴)
168, 15ssexd 5221 . . . 4 (((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴)) ∧ 𝑎𝑏)) → dom (𝑎𝑏) ∈ V)
17 simpl2 1188 . . . . 5 (((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴)) ∧ 𝑎𝑏)) → 𝑅 We 𝐴)
18 wefr 5540 . . . . 5 (𝑅 We 𝐴𝑅 Fr 𝐴)
1917, 18syl 17 . . . 4 (((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴)) ∧ 𝑎𝑏)) → 𝑅 Fr 𝐴)
20 simprr 771 . . . . 5 (((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴)) ∧ 𝑎𝑏)) → 𝑎𝑏)
2114ffnd 6510 . . . . . . 7 (((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴)) ∧ 𝑎𝑏)) → 𝑎 Fn 𝐴)
22 simprlr 778 . . . . . . . . 9 (((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴)) ∧ 𝑎𝑏)) → 𝑏 ∈ (𝐵m 𝐴))
23 elmapi 8422 . . . . . . . . 9 (𝑏 ∈ (𝐵m 𝐴) → 𝑏:𝐴𝐵)
2422, 23syl 17 . . . . . . . 8 (((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴)) ∧ 𝑎𝑏)) → 𝑏:𝐴𝐵)
2524ffnd 6510 . . . . . . 7 (((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴)) ∧ 𝑎𝑏)) → 𝑏 Fn 𝐴)
26 fndmdifeq0 6809 . . . . . . 7 ((𝑎 Fn 𝐴𝑏 Fn 𝐴) → (dom (𝑎𝑏) = ∅ ↔ 𝑎 = 𝑏))
2721, 25, 26syl2anc 586 . . . . . 6 (((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴)) ∧ 𝑎𝑏)) → (dom (𝑎𝑏) = ∅ ↔ 𝑎 = 𝑏))
2827necon3bid 3060 . . . . 5 (((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴)) ∧ 𝑎𝑏)) → (dom (𝑎𝑏) ≠ ∅ ↔ 𝑎𝑏))
2920, 28mpbird 259 . . . 4 (((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴)) ∧ 𝑎𝑏)) → dom (𝑎𝑏) ≠ ∅)
30 fri 5512 . . . 4 (((dom (𝑎𝑏) ∈ V ∧ 𝑅 Fr 𝐴) ∧ (dom (𝑎𝑏) ⊆ 𝐴 ∧ dom (𝑎𝑏) ≠ ∅)) → ∃𝑐 ∈ dom (𝑎𝑏)∀𝑑 ∈ dom (𝑎𝑏) ¬ 𝑑𝑅𝑐)
3116, 19, 15, 29, 30syl22anc 836 . . 3 (((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴)) ∧ 𝑎𝑏)) → ∃𝑐 ∈ dom (𝑎𝑏)∀𝑑 ∈ dom (𝑎𝑏) ¬ 𝑑𝑅𝑐)
322, 3, 4, 6, 7, 31wemapsolem 9008 . 2 ((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) → 𝑇 Or (𝐵m 𝐴))
331, 32syl3an1 1159 1 ((𝐴𝑉𝑅 We 𝐴𝑆 Or 𝐵) → 𝑇 Or (𝐵m 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139  Vcvv 3495  cdif 3933  wss 3936  c0 4291   class class class wbr 5059  {copab 5121   Or wor 5468   Fr wfr 5506   We wwe 5508  dom cdm 5550   Fn wfn 6345  wf 6346  cfv 6350  (class class class)co 7150  m cmap 8400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-fv 6358  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-map 8402
This theorem is referenced by:  opsrtoslem2  20259  wepwso  39636
  Copyright terms: Public domain W3C validator