Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  wemapsolem Structured version   Visualization version   GIF version

Theorem wemapsolem 8399
 Description: Lemma for wemapso 8400. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
wemapso.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
wemapsolem.1 𝑈 ⊆ (𝐵𝑚 𝐴)
wemapsolem.2 (𝜑𝐴 ∈ V)
wemapsolem.3 (𝜑𝑅 Or 𝐴)
wemapsolem.4 (𝜑𝑆 Or 𝐵)
wemapsolem.5 ((𝜑 ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → ∃𝑐 ∈ dom (𝑎𝑏)∀𝑑 ∈ dom (𝑎𝑏) ¬ 𝑑𝑅𝑐)
Assertion
Ref Expression
wemapsolem (𝜑𝑇 Or 𝑈)
Distinct variable groups:   𝑎,𝑏,𝑐,𝑑,𝑥,𝐵   𝑇,𝑎,𝑏,𝑐,𝑑   𝑈,𝑎,𝑏,𝑐,𝑑   𝑤,𝑎,𝑦,𝑧,𝑏,𝑐,𝑥,𝐴,𝑑   𝑅,𝑎,𝑏,𝑐,𝑑,𝑤,𝑥,𝑦,𝑧   𝑆,𝑎,𝑏,𝑐,𝑑,𝑤,𝑥,𝑦,𝑧   𝜑,𝑎,𝑏,𝑐,𝑑
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝐵(𝑦,𝑧,𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)   𝑈(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem wemapsolem
StepHypRef Expression
1 wemapsolem.1 . . 3 𝑈 ⊆ (𝐵𝑚 𝐴)
2 wemapsolem.2 . . . 4 (𝜑𝐴 ∈ V)
3 wemapsolem.3 . . . 4 (𝜑𝑅 Or 𝐴)
4 wemapsolem.4 . . . . 5 (𝜑𝑆 Or 𝐵)
5 sopo 5012 . . . . 5 (𝑆 Or 𝐵𝑆 Po 𝐵)
64, 5syl 17 . . . 4 (𝜑𝑆 Po 𝐵)
7 wemapso.t . . . . 5 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
87wemappo 8398 . . . 4 ((𝐴 ∈ V ∧ 𝑅 Or 𝐴𝑆 Po 𝐵) → 𝑇 Po (𝐵𝑚 𝐴))
92, 3, 6, 8syl3anc 1323 . . 3 (𝜑𝑇 Po (𝐵𝑚 𝐴))
10 poss 4997 . . 3 (𝑈 ⊆ (𝐵𝑚 𝐴) → (𝑇 Po (𝐵𝑚 𝐴) → 𝑇 Po 𝑈))
111, 9, 10mpsyl 68 . 2 (𝜑𝑇 Po 𝑈)
12 df-ne 2791 . . . . 5 (𝑎𝑏 ↔ ¬ 𝑎 = 𝑏)
13 wemapsolem.5 . . . . . . . . 9 ((𝜑 ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → ∃𝑐 ∈ dom (𝑎𝑏)∀𝑑 ∈ dom (𝑎𝑏) ¬ 𝑑𝑅𝑐)
14 simprll 801 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝑎𝑈)
151, 14sseldi 3581 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝑎 ∈ (𝐵𝑚 𝐴))
16 elmapi 7823 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ (𝐵𝑚 𝐴) → 𝑎:𝐴𝐵)
1715, 16syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝑎:𝐴𝐵)
18 ffn 6002 . . . . . . . . . . . . . . . 16 (𝑎:𝐴𝐵𝑎 Fn 𝐴)
1917, 18syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝑎 Fn 𝐴)
20 simprlr 802 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝑏𝑈)
211, 20sseldi 3581 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝑏 ∈ (𝐵𝑚 𝐴))
22 elmapi 7823 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ (𝐵𝑚 𝐴) → 𝑏:𝐴𝐵)
2321, 22syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝑏:𝐴𝐵)
24 ffn 6002 . . . . . . . . . . . . . . . 16 (𝑏:𝐴𝐵𝑏 Fn 𝐴)
2523, 24syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝑏 Fn 𝐴)
26 fndmdif 6277 . . . . . . . . . . . . . . 15 ((𝑎 Fn 𝐴𝑏 Fn 𝐴) → dom (𝑎𝑏) = {𝑥𝐴 ∣ (𝑎𝑥) ≠ (𝑏𝑥)})
2719, 25, 26syl2anc 692 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → dom (𝑎𝑏) = {𝑥𝐴 ∣ (𝑎𝑥) ≠ (𝑏𝑥)})
2827eleq2d 2684 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → (𝑐 ∈ dom (𝑎𝑏) ↔ 𝑐 ∈ {𝑥𝐴 ∣ (𝑎𝑥) ≠ (𝑏𝑥)}))
29 nesym 2846 . . . . . . . . . . . . . . 15 ((𝑎𝑥) ≠ (𝑏𝑥) ↔ ¬ (𝑏𝑥) = (𝑎𝑥))
30 fveq2 6148 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑐 → (𝑏𝑥) = (𝑏𝑐))
31 fveq2 6148 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑐 → (𝑎𝑥) = (𝑎𝑐))
3230, 31eqeq12d 2636 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑐 → ((𝑏𝑥) = (𝑎𝑥) ↔ (𝑏𝑐) = (𝑎𝑐)))
3332notbid 308 . . . . . . . . . . . . . . 15 (𝑥 = 𝑐 → (¬ (𝑏𝑥) = (𝑎𝑥) ↔ ¬ (𝑏𝑐) = (𝑎𝑐)))
3429, 33syl5bb 272 . . . . . . . . . . . . . 14 (𝑥 = 𝑐 → ((𝑎𝑥) ≠ (𝑏𝑥) ↔ ¬ (𝑏𝑐) = (𝑎𝑐)))
3534elrab 3346 . . . . . . . . . . . . 13 (𝑐 ∈ {𝑥𝐴 ∣ (𝑎𝑥) ≠ (𝑏𝑥)} ↔ (𝑐𝐴 ∧ ¬ (𝑏𝑐) = (𝑎𝑐)))
3628, 35syl6bb 276 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → (𝑐 ∈ dom (𝑎𝑏) ↔ (𝑐𝐴 ∧ ¬ (𝑏𝑐) = (𝑎𝑐))))
3727eleq2d 2684 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → (𝑑 ∈ dom (𝑎𝑏) ↔ 𝑑 ∈ {𝑥𝐴 ∣ (𝑎𝑥) ≠ (𝑏𝑥)}))
38 fveq2 6148 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑑 → (𝑏𝑥) = (𝑏𝑑))
39 fveq2 6148 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑑 → (𝑎𝑥) = (𝑎𝑑))
4038, 39eqeq12d 2636 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑑 → ((𝑏𝑥) = (𝑎𝑥) ↔ (𝑏𝑑) = (𝑎𝑑)))
4140notbid 308 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑑 → (¬ (𝑏𝑥) = (𝑎𝑥) ↔ ¬ (𝑏𝑑) = (𝑎𝑑)))
4229, 41syl5bb 272 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑑 → ((𝑎𝑥) ≠ (𝑏𝑥) ↔ ¬ (𝑏𝑑) = (𝑎𝑑)))
4342elrab 3346 . . . . . . . . . . . . . . . 16 (𝑑 ∈ {𝑥𝐴 ∣ (𝑎𝑥) ≠ (𝑏𝑥)} ↔ (𝑑𝐴 ∧ ¬ (𝑏𝑑) = (𝑎𝑑)))
4437, 43syl6bb 276 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → (𝑑 ∈ dom (𝑎𝑏) ↔ (𝑑𝐴 ∧ ¬ (𝑏𝑑) = (𝑎𝑑))))
4544imbi1d 331 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → ((𝑑 ∈ dom (𝑎𝑏) → ¬ 𝑑𝑅𝑐) ↔ ((𝑑𝐴 ∧ ¬ (𝑏𝑑) = (𝑎𝑑)) → ¬ 𝑑𝑅𝑐)))
46 impexp 462 . . . . . . . . . . . . . . 15 (((𝑑𝐴 ∧ ¬ (𝑏𝑑) = (𝑎𝑑)) → ¬ 𝑑𝑅𝑐) ↔ (𝑑𝐴 → (¬ (𝑏𝑑) = (𝑎𝑑) → ¬ 𝑑𝑅𝑐)))
47 con34b 306 . . . . . . . . . . . . . . . 16 ((𝑑𝑅𝑐 → (𝑏𝑑) = (𝑎𝑑)) ↔ (¬ (𝑏𝑑) = (𝑎𝑑) → ¬ 𝑑𝑅𝑐))
4847imbi2i 326 . . . . . . . . . . . . . . 15 ((𝑑𝐴 → (𝑑𝑅𝑐 → (𝑏𝑑) = (𝑎𝑑))) ↔ (𝑑𝐴 → (¬ (𝑏𝑑) = (𝑎𝑑) → ¬ 𝑑𝑅𝑐)))
4946, 48bitr4i 267 . . . . . . . . . . . . . 14 (((𝑑𝐴 ∧ ¬ (𝑏𝑑) = (𝑎𝑑)) → ¬ 𝑑𝑅𝑐) ↔ (𝑑𝐴 → (𝑑𝑅𝑐 → (𝑏𝑑) = (𝑎𝑑))))
5045, 49syl6bb 276 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → ((𝑑 ∈ dom (𝑎𝑏) → ¬ 𝑑𝑅𝑐) ↔ (𝑑𝐴 → (𝑑𝑅𝑐 → (𝑏𝑑) = (𝑎𝑑)))))
5150ralbidv2 2978 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → (∀𝑑 ∈ dom (𝑎𝑏) ¬ 𝑑𝑅𝑐 ↔ ∀𝑑𝐴 (𝑑𝑅𝑐 → (𝑏𝑑) = (𝑎𝑑))))
5236, 51anbi12d 746 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → ((𝑐 ∈ dom (𝑎𝑏) ∧ ∀𝑑 ∈ dom (𝑎𝑏) ¬ 𝑑𝑅𝑐) ↔ ((𝑐𝐴 ∧ ¬ (𝑏𝑐) = (𝑎𝑐)) ∧ ∀𝑑𝐴 (𝑑𝑅𝑐 → (𝑏𝑑) = (𝑎𝑑)))))
53 anass 680 . . . . . . . . . . 11 (((𝑐𝐴 ∧ ¬ (𝑏𝑐) = (𝑎𝑐)) ∧ ∀𝑑𝐴 (𝑑𝑅𝑐 → (𝑏𝑑) = (𝑎𝑑))) ↔ (𝑐𝐴 ∧ (¬ (𝑏𝑐) = (𝑎𝑐) ∧ ∀𝑑𝐴 (𝑑𝑅𝑐 → (𝑏𝑑) = (𝑎𝑑)))))
5452, 53syl6bb 276 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → ((𝑐 ∈ dom (𝑎𝑏) ∧ ∀𝑑 ∈ dom (𝑎𝑏) ¬ 𝑑𝑅𝑐) ↔ (𝑐𝐴 ∧ (¬ (𝑏𝑐) = (𝑎𝑐) ∧ ∀𝑑𝐴 (𝑑𝑅𝑐 → (𝑏𝑑) = (𝑎𝑑))))))
5554rexbidv2 3041 . . . . . . . . 9 ((𝜑 ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → (∃𝑐 ∈ dom (𝑎𝑏)∀𝑑 ∈ dom (𝑎𝑏) ¬ 𝑑𝑅𝑐 ↔ ∃𝑐𝐴 (¬ (𝑏𝑐) = (𝑎𝑐) ∧ ∀𝑑𝐴 (𝑑𝑅𝑐 → (𝑏𝑑) = (𝑎𝑑)))))
5613, 55mpbid 222 . . . . . . . 8 ((𝜑 ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → ∃𝑐𝐴 (¬ (𝑏𝑐) = (𝑎𝑐) ∧ ∀𝑑𝐴 (𝑑𝑅𝑐 → (𝑏𝑑) = (𝑎𝑑))))
574ad2antrr 761 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) ∧ 𝑐𝐴) → 𝑆 Or 𝐵)
5823ffvelrnda 6315 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) ∧ 𝑐𝐴) → (𝑏𝑐) ∈ 𝐵)
5917ffvelrnda 6315 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) ∧ 𝑐𝐴) → (𝑎𝑐) ∈ 𝐵)
60 sotrieq 5022 . . . . . . . . . . . . 13 ((𝑆 Or 𝐵 ∧ ((𝑏𝑐) ∈ 𝐵 ∧ (𝑎𝑐) ∈ 𝐵)) → ((𝑏𝑐) = (𝑎𝑐) ↔ ¬ ((𝑏𝑐)𝑆(𝑎𝑐) ∨ (𝑎𝑐)𝑆(𝑏𝑐))))
6160con2bid 344 . . . . . . . . . . . 12 ((𝑆 Or 𝐵 ∧ ((𝑏𝑐) ∈ 𝐵 ∧ (𝑎𝑐) ∈ 𝐵)) → (((𝑏𝑐)𝑆(𝑎𝑐) ∨ (𝑎𝑐)𝑆(𝑏𝑐)) ↔ ¬ (𝑏𝑐) = (𝑎𝑐)))
6261biimprd 238 . . . . . . . . . . 11 ((𝑆 Or 𝐵 ∧ ((𝑏𝑐) ∈ 𝐵 ∧ (𝑎𝑐) ∈ 𝐵)) → (¬ (𝑏𝑐) = (𝑎𝑐) → ((𝑏𝑐)𝑆(𝑎𝑐) ∨ (𝑎𝑐)𝑆(𝑏𝑐))))
6357, 58, 59, 62syl12anc 1321 . . . . . . . . . 10 (((𝜑 ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) ∧ 𝑐𝐴) → (¬ (𝑏𝑐) = (𝑎𝑐) → ((𝑏𝑐)𝑆(𝑎𝑐) ∨ (𝑎𝑐)𝑆(𝑏𝑐))))
6463anim1d 587 . . . . . . . . 9 (((𝜑 ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) ∧ 𝑐𝐴) → ((¬ (𝑏𝑐) = (𝑎𝑐) ∧ ∀𝑑𝐴 (𝑑𝑅𝑐 → (𝑏𝑑) = (𝑎𝑑))) → (((𝑏𝑐)𝑆(𝑎𝑐) ∨ (𝑎𝑐)𝑆(𝑏𝑐)) ∧ ∀𝑑𝐴 (𝑑𝑅𝑐 → (𝑏𝑑) = (𝑎𝑑)))))
6564reximdva 3011 . . . . . . . 8 ((𝜑 ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → (∃𝑐𝐴 (¬ (𝑏𝑐) = (𝑎𝑐) ∧ ∀𝑑𝐴 (𝑑𝑅𝑐 → (𝑏𝑑) = (𝑎𝑑))) → ∃𝑐𝐴 (((𝑏𝑐)𝑆(𝑎𝑐) ∨ (𝑎𝑐)𝑆(𝑏𝑐)) ∧ ∀𝑑𝐴 (𝑑𝑅𝑐 → (𝑏𝑑) = (𝑎𝑑)))))
6656, 65mpd 15 . . . . . . 7 ((𝜑 ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → ∃𝑐𝐴 (((𝑏𝑐)𝑆(𝑎𝑐) ∨ (𝑎𝑐)𝑆(𝑏𝑐)) ∧ ∀𝑑𝐴 (𝑑𝑅𝑐 → (𝑏𝑑) = (𝑎𝑑))))
67 vex 3189 . . . . . . . . . 10 𝑏 ∈ V
68 vex 3189 . . . . . . . . . 10 𝑎 ∈ V
697wemaplem1 8395 . . . . . . . . . 10 ((𝑏 ∈ V ∧ 𝑎 ∈ V) → (𝑏𝑇𝑎 ↔ ∃𝑐𝐴 ((𝑏𝑐)𝑆(𝑎𝑐) ∧ ∀𝑑𝐴 (𝑑𝑅𝑐 → (𝑏𝑑) = (𝑎𝑑)))))
7067, 68, 69mp2an 707 . . . . . . . . 9 (𝑏𝑇𝑎 ↔ ∃𝑐𝐴 ((𝑏𝑐)𝑆(𝑎𝑐) ∧ ∀𝑑𝐴 (𝑑𝑅𝑐 → (𝑏𝑑) = (𝑎𝑑))))
717wemaplem1 8395 . . . . . . . . . 10 ((𝑎 ∈ V ∧ 𝑏 ∈ V) → (𝑎𝑇𝑏 ↔ ∃𝑐𝐴 ((𝑎𝑐)𝑆(𝑏𝑐) ∧ ∀𝑑𝐴 (𝑑𝑅𝑐 → (𝑎𝑑) = (𝑏𝑑)))))
7268, 67, 71mp2an 707 . . . . . . . . 9 (𝑎𝑇𝑏 ↔ ∃𝑐𝐴 ((𝑎𝑐)𝑆(𝑏𝑐) ∧ ∀𝑑𝐴 (𝑑𝑅𝑐 → (𝑎𝑑) = (𝑏𝑑))))
7370, 72orbi12i 543 . . . . . . . 8 ((𝑏𝑇𝑎𝑎𝑇𝑏) ↔ (∃𝑐𝐴 ((𝑏𝑐)𝑆(𝑎𝑐) ∧ ∀𝑑𝐴 (𝑑𝑅𝑐 → (𝑏𝑑) = (𝑎𝑑))) ∨ ∃𝑐𝐴 ((𝑎𝑐)𝑆(𝑏𝑐) ∧ ∀𝑑𝐴 (𝑑𝑅𝑐 → (𝑎𝑑) = (𝑏𝑑)))))
74 r19.43 3085 . . . . . . . 8 (∃𝑐𝐴 (((𝑏𝑐)𝑆(𝑎𝑐) ∧ ∀𝑑𝐴 (𝑑𝑅𝑐 → (𝑏𝑑) = (𝑎𝑑))) ∨ ((𝑎𝑐)𝑆(𝑏𝑐) ∧ ∀𝑑𝐴 (𝑑𝑅𝑐 → (𝑎𝑑) = (𝑏𝑑)))) ↔ (∃𝑐𝐴 ((𝑏𝑐)𝑆(𝑎𝑐) ∧ ∀𝑑𝐴 (𝑑𝑅𝑐 → (𝑏𝑑) = (𝑎𝑑))) ∨ ∃𝑐𝐴 ((𝑎𝑐)𝑆(𝑏𝑐) ∧ ∀𝑑𝐴 (𝑑𝑅𝑐 → (𝑎𝑑) = (𝑏𝑑)))))
75 andir 911 . . . . . . . . . 10 ((((𝑏𝑐)𝑆(𝑎𝑐) ∨ (𝑎𝑐)𝑆(𝑏𝑐)) ∧ ∀𝑑𝐴 (𝑑𝑅𝑐 → (𝑏𝑑) = (𝑎𝑑))) ↔ (((𝑏𝑐)𝑆(𝑎𝑐) ∧ ∀𝑑𝐴 (𝑑𝑅𝑐 → (𝑏𝑑) = (𝑎𝑑))) ∨ ((𝑎𝑐)𝑆(𝑏𝑐) ∧ ∀𝑑𝐴 (𝑑𝑅𝑐 → (𝑏𝑑) = (𝑎𝑑)))))
76 eqcom 2628 . . . . . . . . . . . . . 14 ((𝑏𝑑) = (𝑎𝑑) ↔ (𝑎𝑑) = (𝑏𝑑))
7776imbi2i 326 . . . . . . . . . . . . 13 ((𝑑𝑅𝑐 → (𝑏𝑑) = (𝑎𝑑)) ↔ (𝑑𝑅𝑐 → (𝑎𝑑) = (𝑏𝑑)))
7877ralbii 2974 . . . . . . . . . . . 12 (∀𝑑𝐴 (𝑑𝑅𝑐 → (𝑏𝑑) = (𝑎𝑑)) ↔ ∀𝑑𝐴 (𝑑𝑅𝑐 → (𝑎𝑑) = (𝑏𝑑)))
7978anbi2i 729 . . . . . . . . . . 11 (((𝑎𝑐)𝑆(𝑏𝑐) ∧ ∀𝑑𝐴 (𝑑𝑅𝑐 → (𝑏𝑑) = (𝑎𝑑))) ↔ ((𝑎𝑐)𝑆(𝑏𝑐) ∧ ∀𝑑𝐴 (𝑑𝑅𝑐 → (𝑎𝑑) = (𝑏𝑑))))
8079orbi2i 541 . . . . . . . . . 10 ((((𝑏𝑐)𝑆(𝑎𝑐) ∧ ∀𝑑𝐴 (𝑑𝑅𝑐 → (𝑏𝑑) = (𝑎𝑑))) ∨ ((𝑎𝑐)𝑆(𝑏𝑐) ∧ ∀𝑑𝐴 (𝑑𝑅𝑐 → (𝑏𝑑) = (𝑎𝑑)))) ↔ (((𝑏𝑐)𝑆(𝑎𝑐) ∧ ∀𝑑𝐴 (𝑑𝑅𝑐 → (𝑏𝑑) = (𝑎𝑑))) ∨ ((𝑎𝑐)𝑆(𝑏𝑐) ∧ ∀𝑑𝐴 (𝑑𝑅𝑐 → (𝑎𝑑) = (𝑏𝑑)))))
8175, 80bitr2i 265 . . . . . . . . 9 ((((𝑏𝑐)𝑆(𝑎𝑐) ∧ ∀𝑑𝐴 (𝑑𝑅𝑐 → (𝑏𝑑) = (𝑎𝑑))) ∨ ((𝑎𝑐)𝑆(𝑏𝑐) ∧ ∀𝑑𝐴 (𝑑𝑅𝑐 → (𝑎𝑑) = (𝑏𝑑)))) ↔ (((𝑏𝑐)𝑆(𝑎𝑐) ∨ (𝑎𝑐)𝑆(𝑏𝑐)) ∧ ∀𝑑𝐴 (𝑑𝑅𝑐 → (𝑏𝑑) = (𝑎𝑑))))
8281rexbii 3034 . . . . . . . 8 (∃𝑐𝐴 (((𝑏𝑐)𝑆(𝑎𝑐) ∧ ∀𝑑𝐴 (𝑑𝑅𝑐 → (𝑏𝑑) = (𝑎𝑑))) ∨ ((𝑎𝑐)𝑆(𝑏𝑐) ∧ ∀𝑑𝐴 (𝑑𝑅𝑐 → (𝑎𝑑) = (𝑏𝑑)))) ↔ ∃𝑐𝐴 (((𝑏𝑐)𝑆(𝑎𝑐) ∨ (𝑎𝑐)𝑆(𝑏𝑐)) ∧ ∀𝑑𝐴 (𝑑𝑅𝑐 → (𝑏𝑑) = (𝑎𝑑))))
8373, 74, 823bitr2i 288 . . . . . . 7 ((𝑏𝑇𝑎𝑎𝑇𝑏) ↔ ∃𝑐𝐴 (((𝑏𝑐)𝑆(𝑎𝑐) ∨ (𝑎𝑐)𝑆(𝑏𝑐)) ∧ ∀𝑑𝐴 (𝑑𝑅𝑐 → (𝑏𝑑) = (𝑎𝑑))))
8466, 83sylibr 224 . . . . . 6 ((𝜑 ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → (𝑏𝑇𝑎𝑎𝑇𝑏))
8584expr 642 . . . . 5 ((𝜑 ∧ (𝑎𝑈𝑏𝑈)) → (𝑎𝑏 → (𝑏𝑇𝑎𝑎𝑇𝑏)))
8612, 85syl5bir 233 . . . 4 ((𝜑 ∧ (𝑎𝑈𝑏𝑈)) → (¬ 𝑎 = 𝑏 → (𝑏𝑇𝑎𝑎𝑇𝑏)))
8786orrd 393 . . 3 ((𝜑 ∧ (𝑎𝑈𝑏𝑈)) → (𝑎 = 𝑏 ∨ (𝑏𝑇𝑎𝑎𝑇𝑏)))
88 3orrot 1042 . . . 4 ((𝑎𝑇𝑏𝑎 = 𝑏𝑏𝑇𝑎) ↔ (𝑎 = 𝑏𝑏𝑇𝑎𝑎𝑇𝑏))
89 3orass 1039 . . . 4 ((𝑎 = 𝑏𝑏𝑇𝑎𝑎𝑇𝑏) ↔ (𝑎 = 𝑏 ∨ (𝑏𝑇𝑎𝑎𝑇𝑏)))
9088, 89bitr2i 265 . . 3 ((𝑎 = 𝑏 ∨ (𝑏𝑇𝑎𝑎𝑇𝑏)) ↔ (𝑎𝑇𝑏𝑎 = 𝑏𝑏𝑇𝑎))
9187, 90sylib 208 . 2 ((𝜑 ∧ (𝑎𝑈𝑏𝑈)) → (𝑎𝑇𝑏𝑎 = 𝑏𝑏𝑇𝑎))
9211, 91issod 5025 1 (𝜑𝑇 Or 𝑈)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∨ wo 383   ∧ wa 384   ∨ w3o 1035   = wceq 1480   ∈ wcel 1987   ≠ wne 2790  ∀wral 2907  ∃wrex 2908  {crab 2911  Vcvv 3186   ∖ cdif 3552   ⊆ wss 3555   class class class wbr 4613  {copab 4672   Po wpo 4993   Or wor 4994  dom cdm 5074   Fn wfn 5842  ⟶wf 5843  ‘cfv 5847  (class class class)co 6604   ↑𝑚 cmap 7802 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-po 4995  df-so 4996  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-1st 7113  df-2nd 7114  df-map 7804 This theorem is referenced by:  wemapso  8400  wemapso2lem  8401
 Copyright terms: Public domain W3C validator