MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wemoiso Structured version   Visualization version   GIF version

Theorem wemoiso 7666
Description: Thus, there is at most one isomorphism between any two well-ordered sets. TODO: Shorten finnisoeu 9531. (Contributed by Stefan O'Rear, 12-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
wemoiso (𝑅 We 𝐴 → ∃*𝑓 𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵))
Distinct variable groups:   𝑅,𝑓   𝐴,𝑓   𝑆,𝑓   𝐵,𝑓

Proof of Theorem wemoiso
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 simpl 485 . . . . . 6 ((𝑅 We 𝐴 ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝑅 We 𝐴)
2 vex 3496 . . . . . . . . 9 𝑓 ∈ V
3 isof1o 7068 . . . . . . . . . 10 (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝑓:𝐴1-1-onto𝐵)
4 f1of 6608 . . . . . . . . . 10 (𝑓:𝐴1-1-onto𝐵𝑓:𝐴𝐵)
53, 4syl 17 . . . . . . . . 9 (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝑓:𝐴𝐵)
6 dmfex 7633 . . . . . . . . 9 ((𝑓 ∈ V ∧ 𝑓:𝐴𝐵) → 𝐴 ∈ V)
72, 5, 6sylancr 589 . . . . . . . 8 (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐴 ∈ V)
87ad2antrl 726 . . . . . . 7 ((𝑅 We 𝐴 ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐴 ∈ V)
9 exse 5512 . . . . . . 7 (𝐴 ∈ V → 𝑅 Se 𝐴)
108, 9syl 17 . . . . . 6 ((𝑅 We 𝐴 ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝑅 Se 𝐴)
111, 10jca 514 . . . . 5 ((𝑅 We 𝐴 ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → (𝑅 We 𝐴𝑅 Se 𝐴))
12 weisoeq 7100 . . . . 5 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝑓 = 𝑔)
1311, 12sylancom 590 . . . 4 ((𝑅 We 𝐴 ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝑓 = 𝑔)
1413ex 415 . . 3 (𝑅 We 𝐴 → ((𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵)) → 𝑓 = 𝑔))
1514alrimivv 1923 . 2 (𝑅 We 𝐴 → ∀𝑓𝑔((𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵)) → 𝑓 = 𝑔))
16 isoeq1 7062 . . 3 (𝑓 = 𝑔 → (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵)))
1716mo4 2644 . 2 (∃*𝑓 𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ ∀𝑓𝑔((𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵)) → 𝑓 = 𝑔))
1815, 17sylibr 236 1 (𝑅 We 𝐴 → ∃*𝑓 𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wal 1529  wcel 2108  ∃*wmo 2614  Vcvv 3493   Se wse 5505   We wwe 5506  wf 6344  1-1-ontowf1o 6347   Isom wiso 6349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357
This theorem is referenced by:  fzisoeu  41556
  Copyright terms: Public domain W3C validator