MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  weniso Structured version   Visualization version   GIF version

Theorem weniso 6482
Description: A set-like well-ordering has no nontrivial automorphisms. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Revised by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
weniso ((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) → 𝐹 = ( I ↾ 𝐴))

Proof of Theorem weniso
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rabn0 3911 . . . . . 6 ({𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ≠ ∅ ↔ ∃𝑎𝐴 ¬ (𝐹𝑎) = 𝑎)
2 rexnal 2977 . . . . . 6 (∃𝑎𝐴 ¬ (𝐹𝑎) = 𝑎 ↔ ¬ ∀𝑎𝐴 (𝐹𝑎) = 𝑎)
31, 2bitri 262 . . . . 5 ({𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ≠ ∅ ↔ ¬ ∀𝑎𝐴 (𝐹𝑎) = 𝑎)
4 simpl1 1056 . . . . . . . . 9 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ≠ ∅) → 𝑅 We 𝐴)
5 simpl2 1057 . . . . . . . . 9 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ≠ ∅) → 𝑅 Se 𝐴)
6 ssrab2 3649 . . . . . . . . . 10 {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ⊆ 𝐴
76a1i 11 . . . . . . . . 9 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ≠ ∅) → {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ⊆ 𝐴)
8 simpr 475 . . . . . . . . 9 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ≠ ∅) → {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ≠ ∅)
9 wereu2 5025 . . . . . . . . 9 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ ({𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ⊆ 𝐴 ∧ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ≠ ∅)) → ∃!𝑏 ∈ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎}∀𝑐 ∈ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ¬ 𝑐𝑅𝑏)
104, 5, 7, 8, 9syl22anc 1318 . . . . . . . 8 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ≠ ∅) → ∃!𝑏 ∈ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎}∀𝑐 ∈ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ¬ 𝑐𝑅𝑏)
11 reurex 3136 . . . . . . . 8 (∃!𝑏 ∈ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎}∀𝑐 ∈ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ¬ 𝑐𝑅𝑏 → ∃𝑏 ∈ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎}∀𝑐 ∈ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ¬ 𝑐𝑅𝑏)
1210, 11syl 17 . . . . . . 7 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ≠ ∅) → ∃𝑏 ∈ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎}∀𝑐 ∈ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ¬ 𝑐𝑅𝑏)
1312ex 448 . . . . . 6 ((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) → ({𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ≠ ∅ → ∃𝑏 ∈ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎}∀𝑐 ∈ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ¬ 𝑐𝑅𝑏))
14 fveq2 6088 . . . . . . . . . . 11 (𝑎 = 𝑏 → (𝐹𝑎) = (𝐹𝑏))
15 id 22 . . . . . . . . . . 11 (𝑎 = 𝑏𝑎 = 𝑏)
1614, 15eqeq12d 2624 . . . . . . . . . 10 (𝑎 = 𝑏 → ((𝐹𝑎) = 𝑎 ↔ (𝐹𝑏) = 𝑏))
1716notbid 306 . . . . . . . . 9 (𝑎 = 𝑏 → (¬ (𝐹𝑎) = 𝑎 ↔ ¬ (𝐹𝑏) = 𝑏))
1817elrab 3330 . . . . . . . 8 (𝑏 ∈ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ↔ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏))
19 fveq2 6088 . . . . . . . . . . . . . 14 (𝑎 = 𝑐 → (𝐹𝑎) = (𝐹𝑐))
20 id 22 . . . . . . . . . . . . . 14 (𝑎 = 𝑐𝑎 = 𝑐)
2119, 20eqeq12d 2624 . . . . . . . . . . . . 13 (𝑎 = 𝑐 → ((𝐹𝑎) = 𝑎 ↔ (𝐹𝑐) = 𝑐))
2221notbid 306 . . . . . . . . . . . 12 (𝑎 = 𝑐 → (¬ (𝐹𝑎) = 𝑎 ↔ ¬ (𝐹𝑐) = 𝑐))
2322ralrab 3334 . . . . . . . . . . 11 (∀𝑐 ∈ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ¬ 𝑐𝑅𝑏 ↔ ∀𝑐𝐴 (¬ (𝐹𝑐) = 𝑐 → ¬ 𝑐𝑅𝑏))
24 con34b 304 . . . . . . . . . . . . 13 ((𝑐𝑅𝑏 → (𝐹𝑐) = 𝑐) ↔ (¬ (𝐹𝑐) = 𝑐 → ¬ 𝑐𝑅𝑏))
2524bicomi 212 . . . . . . . . . . . 12 ((¬ (𝐹𝑐) = 𝑐 → ¬ 𝑐𝑅𝑏) ↔ (𝑐𝑅𝑏 → (𝐹𝑐) = 𝑐))
2625ralbii 2962 . . . . . . . . . . 11 (∀𝑐𝐴 (¬ (𝐹𝑐) = 𝑐 → ¬ 𝑐𝑅𝑏) ↔ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝐹𝑐) = 𝑐))
2723, 26bitri 262 . . . . . . . . . 10 (∀𝑐 ∈ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ¬ 𝑐𝑅𝑏 ↔ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝐹𝑐) = 𝑐))
28 simpl3 1058 . . . . . . . . . . . . . . . . . 18 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) → 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴))
29 isof1o 6451 . . . . . . . . . . . . . . . . . 18 (𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴) → 𝐹:𝐴1-1-onto𝐴)
3028, 29syl 17 . . . . . . . . . . . . . . . . 17 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) → 𝐹:𝐴1-1-onto𝐴)
31 f1of 6035 . . . . . . . . . . . . . . . . 17 (𝐹:𝐴1-1-onto𝐴𝐹:𝐴𝐴)
3230, 31syl 17 . . . . . . . . . . . . . . . 16 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) → 𝐹:𝐴𝐴)
33 simprl 789 . . . . . . . . . . . . . . . 16 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) → 𝑏𝐴)
3432, 33ffvelrnd 6253 . . . . . . . . . . . . . . 15 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) → (𝐹𝑏) ∈ 𝐴)
35 breq1 4580 . . . . . . . . . . . . . . . . 17 (𝑐 = (𝐹𝑏) → (𝑐𝑅𝑏 ↔ (𝐹𝑏)𝑅𝑏))
36 fveq2 6088 . . . . . . . . . . . . . . . . . 18 (𝑐 = (𝐹𝑏) → (𝐹𝑐) = (𝐹‘(𝐹𝑏)))
37 id 22 . . . . . . . . . . . . . . . . . 18 (𝑐 = (𝐹𝑏) → 𝑐 = (𝐹𝑏))
3836, 37eqeq12d 2624 . . . . . . . . . . . . . . . . 17 (𝑐 = (𝐹𝑏) → ((𝐹𝑐) = 𝑐 ↔ (𝐹‘(𝐹𝑏)) = (𝐹𝑏)))
3935, 38imbi12d 332 . . . . . . . . . . . . . . . 16 (𝑐 = (𝐹𝑏) → ((𝑐𝑅𝑏 → (𝐹𝑐) = 𝑐) ↔ ((𝐹𝑏)𝑅𝑏 → (𝐹‘(𝐹𝑏)) = (𝐹𝑏))))
4039rspcv 3277 . . . . . . . . . . . . . . 15 ((𝐹𝑏) ∈ 𝐴 → (∀𝑐𝐴 (𝑐𝑅𝑏 → (𝐹𝑐) = 𝑐) → ((𝐹𝑏)𝑅𝑏 → (𝐹‘(𝐹𝑏)) = (𝐹𝑏))))
4134, 40syl 17 . . . . . . . . . . . . . 14 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) → (∀𝑐𝐴 (𝑐𝑅𝑏 → (𝐹𝑐) = 𝑐) → ((𝐹𝑏)𝑅𝑏 → (𝐹‘(𝐹𝑏)) = (𝐹𝑏))))
4241com23 83 . . . . . . . . . . . . 13 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) → ((𝐹𝑏)𝑅𝑏 → (∀𝑐𝐴 (𝑐𝑅𝑏 → (𝐹𝑐) = 𝑐) → (𝐹‘(𝐹𝑏)) = (𝐹𝑏))))
4342imp 443 . . . . . . . . . . . 12 ((((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) ∧ (𝐹𝑏)𝑅𝑏) → (∀𝑐𝐴 (𝑐𝑅𝑏 → (𝐹𝑐) = 𝑐) → (𝐹‘(𝐹𝑏)) = (𝐹𝑏)))
44 f1of1 6034 . . . . . . . . . . . . . . . 16 (𝐹:𝐴1-1-onto𝐴𝐹:𝐴1-1𝐴)
4530, 44syl 17 . . . . . . . . . . . . . . 15 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) → 𝐹:𝐴1-1𝐴)
46 f1fveq 6398 . . . . . . . . . . . . . . 15 ((𝐹:𝐴1-1𝐴 ∧ ((𝐹𝑏) ∈ 𝐴𝑏𝐴)) → ((𝐹‘(𝐹𝑏)) = (𝐹𝑏) ↔ (𝐹𝑏) = 𝑏))
4745, 34, 33, 46syl12anc 1315 . . . . . . . . . . . . . 14 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) → ((𝐹‘(𝐹𝑏)) = (𝐹𝑏) ↔ (𝐹𝑏) = 𝑏))
48 pm2.21 118 . . . . . . . . . . . . . . 15 (¬ (𝐹𝑏) = 𝑏 → ((𝐹𝑏) = 𝑏 → ∀𝑎𝐴 (𝐹𝑎) = 𝑎))
4948ad2antll 760 . . . . . . . . . . . . . 14 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) → ((𝐹𝑏) = 𝑏 → ∀𝑎𝐴 (𝐹𝑎) = 𝑎))
5047, 49sylbid 228 . . . . . . . . . . . . 13 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) → ((𝐹‘(𝐹𝑏)) = (𝐹𝑏) → ∀𝑎𝐴 (𝐹𝑎) = 𝑎))
5150adantr 479 . . . . . . . . . . . 12 ((((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) ∧ (𝐹𝑏)𝑅𝑏) → ((𝐹‘(𝐹𝑏)) = (𝐹𝑏) → ∀𝑎𝐴 (𝐹𝑎) = 𝑎))
5243, 51syld 45 . . . . . . . . . . 11 ((((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) ∧ (𝐹𝑏)𝑅𝑏) → (∀𝑐𝐴 (𝑐𝑅𝑏 → (𝐹𝑐) = 𝑐) → ∀𝑎𝐴 (𝐹𝑎) = 𝑎))
53 f1ocnv 6047 . . . . . . . . . . . . . . . 16 (𝐹:𝐴1-1-onto𝐴𝐹:𝐴1-1-onto𝐴)
54 f1of 6035 . . . . . . . . . . . . . . . 16 (𝐹:𝐴1-1-onto𝐴𝐹:𝐴𝐴)
5530, 53, 543syl 18 . . . . . . . . . . . . . . 15 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) → 𝐹:𝐴𝐴)
5655, 33ffvelrnd 6253 . . . . . . . . . . . . . 14 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) → (𝐹𝑏) ∈ 𝐴)
5756adantr 479 . . . . . . . . . . . . 13 ((((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) ∧ 𝑏𝑅(𝐹𝑏)) → (𝐹𝑏) ∈ 𝐴)
58 isorel 6454 . . . . . . . . . . . . . . . 16 ((𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴) ∧ ((𝐹𝑏) ∈ 𝐴𝑏𝐴)) → ((𝐹𝑏)𝑅𝑏 ↔ (𝐹‘(𝐹𝑏))𝑅(𝐹𝑏)))
5928, 56, 33, 58syl12anc 1315 . . . . . . . . . . . . . . 15 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) → ((𝐹𝑏)𝑅𝑏 ↔ (𝐹‘(𝐹𝑏))𝑅(𝐹𝑏)))
60 f1ocnvfv2 6411 . . . . . . . . . . . . . . . . 17 ((𝐹:𝐴1-1-onto𝐴𝑏𝐴) → (𝐹‘(𝐹𝑏)) = 𝑏)
6130, 33, 60syl2anc 690 . . . . . . . . . . . . . . . 16 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) → (𝐹‘(𝐹𝑏)) = 𝑏)
6261breq1d 4587 . . . . . . . . . . . . . . 15 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) → ((𝐹‘(𝐹𝑏))𝑅(𝐹𝑏) ↔ 𝑏𝑅(𝐹𝑏)))
6359, 62bitr2d 267 . . . . . . . . . . . . . 14 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) → (𝑏𝑅(𝐹𝑏) ↔ (𝐹𝑏)𝑅𝑏))
6463biimpa 499 . . . . . . . . . . . . 13 ((((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) ∧ 𝑏𝑅(𝐹𝑏)) → (𝐹𝑏)𝑅𝑏)
65 breq1 4580 . . . . . . . . . . . . . . . 16 (𝑐 = (𝐹𝑏) → (𝑐𝑅𝑏 ↔ (𝐹𝑏)𝑅𝑏))
66 fveq2 6088 . . . . . . . . . . . . . . . . 17 (𝑐 = (𝐹𝑏) → (𝐹𝑐) = (𝐹‘(𝐹𝑏)))
67 id 22 . . . . . . . . . . . . . . . . 17 (𝑐 = (𝐹𝑏) → 𝑐 = (𝐹𝑏))
6866, 67eqeq12d 2624 . . . . . . . . . . . . . . . 16 (𝑐 = (𝐹𝑏) → ((𝐹𝑐) = 𝑐 ↔ (𝐹‘(𝐹𝑏)) = (𝐹𝑏)))
6965, 68imbi12d 332 . . . . . . . . . . . . . . 15 (𝑐 = (𝐹𝑏) → ((𝑐𝑅𝑏 → (𝐹𝑐) = 𝑐) ↔ ((𝐹𝑏)𝑅𝑏 → (𝐹‘(𝐹𝑏)) = (𝐹𝑏))))
7069rspcv 3277 . . . . . . . . . . . . . 14 ((𝐹𝑏) ∈ 𝐴 → (∀𝑐𝐴 (𝑐𝑅𝑏 → (𝐹𝑐) = 𝑐) → ((𝐹𝑏)𝑅𝑏 → (𝐹‘(𝐹𝑏)) = (𝐹𝑏))))
7170com23 83 . . . . . . . . . . . . 13 ((𝐹𝑏) ∈ 𝐴 → ((𝐹𝑏)𝑅𝑏 → (∀𝑐𝐴 (𝑐𝑅𝑏 → (𝐹𝑐) = 𝑐) → (𝐹‘(𝐹𝑏)) = (𝐹𝑏))))
7257, 64, 71sylc 62 . . . . . . . . . . . 12 ((((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) ∧ 𝑏𝑅(𝐹𝑏)) → (∀𝑐𝐴 (𝑐𝑅𝑏 → (𝐹𝑐) = 𝑐) → (𝐹‘(𝐹𝑏)) = (𝐹𝑏)))
73 simplrr 796 . . . . . . . . . . . . . . 15 ((((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) ∧ (𝐹‘(𝐹𝑏)) = (𝐹𝑏)) → ¬ (𝐹𝑏) = 𝑏)
74 fveq2 6088 . . . . . . . . . . . . . . . . 17 ((𝐹‘(𝐹𝑏)) = (𝐹𝑏) → (𝐹‘(𝐹‘(𝐹𝑏))) = (𝐹‘(𝐹𝑏)))
7574adantl 480 . . . . . . . . . . . . . . . 16 ((((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) ∧ (𝐹‘(𝐹𝑏)) = (𝐹𝑏)) → (𝐹‘(𝐹‘(𝐹𝑏))) = (𝐹‘(𝐹𝑏)))
7661fveq2d 6092 . . . . . . . . . . . . . . . . 17 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) → (𝐹‘(𝐹‘(𝐹𝑏))) = (𝐹𝑏))
7776adantr 479 . . . . . . . . . . . . . . . 16 ((((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) ∧ (𝐹‘(𝐹𝑏)) = (𝐹𝑏)) → (𝐹‘(𝐹‘(𝐹𝑏))) = (𝐹𝑏))
7861adantr 479 . . . . . . . . . . . . . . . 16 ((((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) ∧ (𝐹‘(𝐹𝑏)) = (𝐹𝑏)) → (𝐹‘(𝐹𝑏)) = 𝑏)
7975, 77, 783eqtr3d 2651 . . . . . . . . . . . . . . 15 ((((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) ∧ (𝐹‘(𝐹𝑏)) = (𝐹𝑏)) → (𝐹𝑏) = 𝑏)
8073, 79, 48sylc 62 . . . . . . . . . . . . . 14 ((((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) ∧ (𝐹‘(𝐹𝑏)) = (𝐹𝑏)) → ∀𝑎𝐴 (𝐹𝑎) = 𝑎)
8180ex 448 . . . . . . . . . . . . 13 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) → ((𝐹‘(𝐹𝑏)) = (𝐹𝑏) → ∀𝑎𝐴 (𝐹𝑎) = 𝑎))
8281adantr 479 . . . . . . . . . . . 12 ((((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) ∧ 𝑏𝑅(𝐹𝑏)) → ((𝐹‘(𝐹𝑏)) = (𝐹𝑏) → ∀𝑎𝐴 (𝐹𝑎) = 𝑎))
8372, 82syld 45 . . . . . . . . . . 11 ((((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) ∧ 𝑏𝑅(𝐹𝑏)) → (∀𝑐𝐴 (𝑐𝑅𝑏 → (𝐹𝑐) = 𝑐) → ∀𝑎𝐴 (𝐹𝑎) = 𝑎))
84 simprr 791 . . . . . . . . . . . 12 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) → ¬ (𝐹𝑏) = 𝑏)
85 simpl1 1056 . . . . . . . . . . . . . . 15 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) → 𝑅 We 𝐴)
86 weso 5019 . . . . . . . . . . . . . . 15 (𝑅 We 𝐴𝑅 Or 𝐴)
8785, 86syl 17 . . . . . . . . . . . . . 14 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) → 𝑅 Or 𝐴)
88 sotrieq 4976 . . . . . . . . . . . . . 14 ((𝑅 Or 𝐴 ∧ ((𝐹𝑏) ∈ 𝐴𝑏𝐴)) → ((𝐹𝑏) = 𝑏 ↔ ¬ ((𝐹𝑏)𝑅𝑏𝑏𝑅(𝐹𝑏))))
8987, 34, 33, 88syl12anc 1315 . . . . . . . . . . . . 13 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) → ((𝐹𝑏) = 𝑏 ↔ ¬ ((𝐹𝑏)𝑅𝑏𝑏𝑅(𝐹𝑏))))
9089con2bid 342 . . . . . . . . . . . 12 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) → (((𝐹𝑏)𝑅𝑏𝑏𝑅(𝐹𝑏)) ↔ ¬ (𝐹𝑏) = 𝑏))
9184, 90mpbird 245 . . . . . . . . . . 11 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) → ((𝐹𝑏)𝑅𝑏𝑏𝑅(𝐹𝑏)))
9252, 83, 91mpjaodan 822 . . . . . . . . . 10 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) → (∀𝑐𝐴 (𝑐𝑅𝑏 → (𝐹𝑐) = 𝑐) → ∀𝑎𝐴 (𝐹𝑎) = 𝑎))
9327, 92syl5bi 230 . . . . . . . . 9 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) → (∀𝑐 ∈ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ¬ 𝑐𝑅𝑏 → ∀𝑎𝐴 (𝐹𝑎) = 𝑎))
9493ex 448 . . . . . . . 8 ((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) → ((𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏) → (∀𝑐 ∈ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ¬ 𝑐𝑅𝑏 → ∀𝑎𝐴 (𝐹𝑎) = 𝑎)))
9518, 94syl5bi 230 . . . . . . 7 ((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) → (𝑏 ∈ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} → (∀𝑐 ∈ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ¬ 𝑐𝑅𝑏 → ∀𝑎𝐴 (𝐹𝑎) = 𝑎)))
9695rexlimdv 3011 . . . . . 6 ((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) → (∃𝑏 ∈ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎}∀𝑐 ∈ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ¬ 𝑐𝑅𝑏 → ∀𝑎𝐴 (𝐹𝑎) = 𝑎))
9713, 96syld 45 . . . . 5 ((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) → ({𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ≠ ∅ → ∀𝑎𝐴 (𝐹𝑎) = 𝑎))
983, 97syl5bir 231 . . . 4 ((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) → (¬ ∀𝑎𝐴 (𝐹𝑎) = 𝑎 → ∀𝑎𝐴 (𝐹𝑎) = 𝑎))
9998pm2.18d 122 . . 3 ((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) → ∀𝑎𝐴 (𝐹𝑎) = 𝑎)
100 fvresi 6322 . . . . . 6 (𝑎𝐴 → (( I ↾ 𝐴)‘𝑎) = 𝑎)
101100eqeq2d 2619 . . . . 5 (𝑎𝐴 → ((𝐹𝑎) = (( I ↾ 𝐴)‘𝑎) ↔ (𝐹𝑎) = 𝑎))
102101biimprd 236 . . . 4 (𝑎𝐴 → ((𝐹𝑎) = 𝑎 → (𝐹𝑎) = (( I ↾ 𝐴)‘𝑎)))
103102ralimia 2933 . . 3 (∀𝑎𝐴 (𝐹𝑎) = 𝑎 → ∀𝑎𝐴 (𝐹𝑎) = (( I ↾ 𝐴)‘𝑎))
10499, 103syl 17 . 2 ((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) → ∀𝑎𝐴 (𝐹𝑎) = (( I ↾ 𝐴)‘𝑎))
105293ad2ant3 1076 . . . 4 ((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) → 𝐹:𝐴1-1-onto𝐴)
106 f1ofn 6036 . . . 4 (𝐹:𝐴1-1-onto𝐴𝐹 Fn 𝐴)
107105, 106syl 17 . . 3 ((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) → 𝐹 Fn 𝐴)
108 fnresi 5908 . . . 4 ( I ↾ 𝐴) Fn 𝐴
109108a1i 11 . . 3 ((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) → ( I ↾ 𝐴) Fn 𝐴)
110 eqfnfv 6204 . . 3 ((𝐹 Fn 𝐴 ∧ ( I ↾ 𝐴) Fn 𝐴) → (𝐹 = ( I ↾ 𝐴) ↔ ∀𝑎𝐴 (𝐹𝑎) = (( I ↾ 𝐴)‘𝑎)))
111107, 109, 110syl2anc 690 . 2 ((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) → (𝐹 = ( I ↾ 𝐴) ↔ ∀𝑎𝐴 (𝐹𝑎) = (( I ↾ 𝐴)‘𝑎)))
112104, 111mpbird 245 1 ((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) → 𝐹 = ( I ↾ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wo 381  wa 382  w3a 1030   = wceq 1474  wcel 1976  wne 2779  wral 2895  wrex 2896  ∃!wreu 2897  {crab 2899  wss 3539  c0 3873   class class class wbr 4577   I cid 4938   Or wor 4948   Se wse 4985   We wwe 4986  ccnv 5027  cres 5030   Fn wfn 5785  wf 5786  1-1wf1 5787  1-1-ontowf1o 5789  cfv 5790   Isom wiso 5791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799
This theorem is referenced by:  weisoeq  6483  oiid  8306
  Copyright terms: Public domain W3C validator