MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfr1 Structured version   Visualization version   GIF version

Theorem wfr1 7967
Description: The Principle of Well-Founded Recursion, part 1 of 3. We start with an arbitrary function 𝐺. Then, using a base class 𝐴 and a well-ordering 𝑅 of 𝐴, we define a function 𝐹. This function is said to be defined by "well-founded recursion." The purpose of these three theorems is to demonstrate the properties of 𝐹. We begin by showing that 𝐹 is a function over 𝐴. (Contributed by Scott Fenton, 22-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
wfr1.1 𝑅 We 𝐴
wfr1.2 𝑅 Se 𝐴
wfr1.3 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
wfr1 𝐹 Fn 𝐴

Proof of Theorem wfr1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 wfr1.1 . . 3 𝑅 We 𝐴
2 wfr1.2 . . 3 𝑅 Se 𝐴
3 wfr1.3 . . 3 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
41, 2, 3wfrfun 7959 . 2 Fun 𝐹
5 eqid 2821 . . 3 (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) = (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
61, 2, 3, 5wfrlem16 7964 . 2 dom 𝐹 = 𝐴
7 df-fn 6353 . 2 (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴))
84, 6, 7mpbir2an 709 1 𝐹 Fn 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  cun 3934  {csn 4561  cop 4567   Se wse 5507   We wwe 5508  dom cdm 5550  cres 5552  Predcpred 6142  Fun wfun 6344   Fn wfn 6345  cfv 6350  wrecscwrecs 7940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-wrecs 7941
This theorem is referenced by:  wfr3  7969  tfr1ALT  8030  bpolylem  15396
  Copyright terms: Public domain W3C validator