![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wfr1 | Structured version Visualization version GIF version |
Description: The Principle of Well-Founded Recursion, part 1 of 3. We start with an arbitrary function 𝐺. Then, using a base class 𝐴 and a well-ordering 𝑅 of 𝐴, we define a function 𝐹. This function is said to be defined by "well-founded recursion." The purpose of these three theorems is to demonstrate the properties of 𝐹. We begin by showing that 𝐹 is a function over 𝐴. (Contributed by Scott Fenton, 22-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
Ref | Expression |
---|---|
wfr1.1 | ⊢ 𝑅 We 𝐴 |
wfr1.2 | ⊢ 𝑅 Se 𝐴 |
wfr1.3 | ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) |
Ref | Expression |
---|---|
wfr1 | ⊢ 𝐹 Fn 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wfr1.1 | . . 3 ⊢ 𝑅 We 𝐴 | |
2 | wfr1.2 | . . 3 ⊢ 𝑅 Se 𝐴 | |
3 | wfr1.3 | . . 3 ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) | |
4 | 1, 2, 3 | wfrfun 7592 | . 2 ⊢ Fun 𝐹 |
5 | eqid 2758 | . . 3 ⊢ (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) = (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) | |
6 | 1, 2, 3, 5 | wfrlem16 7597 | . 2 ⊢ dom 𝐹 = 𝐴 |
7 | df-fn 6050 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
8 | 4, 6, 7 | mpbir2an 993 | 1 ⊢ 𝐹 Fn 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1630 ∪ cun 3711 {csn 4319 〈cop 4325 Se wse 5221 We wwe 5222 dom cdm 5264 ↾ cres 5266 Predcpred 5838 Fun wfun 6041 Fn wfn 6042 ‘cfv 6047 wrecscwrecs 7573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-8 2139 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 ax-rep 4921 ax-sep 4931 ax-nul 4939 ax-pow 4990 ax-pr 5053 ax-un 7112 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-eu 2609 df-mo 2610 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ne 2931 df-ral 3053 df-rex 3054 df-reu 3055 df-rmo 3056 df-rab 3057 df-v 3340 df-sbc 3575 df-csb 3673 df-dif 3716 df-un 3718 df-in 3720 df-ss 3727 df-nul 4057 df-if 4229 df-sn 4320 df-pr 4322 df-op 4326 df-uni 4587 df-iun 4672 df-br 4803 df-opab 4863 df-mpt 4880 df-id 5172 df-po 5185 df-so 5186 df-fr 5223 df-se 5224 df-we 5225 df-xp 5270 df-rel 5271 df-cnv 5272 df-co 5273 df-dm 5274 df-rn 5275 df-res 5276 df-ima 5277 df-pred 5839 df-iota 6010 df-fun 6049 df-fn 6050 df-f 6051 df-f1 6052 df-fo 6053 df-f1o 6054 df-fv 6055 df-wrecs 7574 |
This theorem is referenced by: wfr3 7602 tfr1ALT 7663 bpolylem 14976 |
Copyright terms: Public domain | W3C validator |