MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfrdmcl Structured version   Visualization version   GIF version

Theorem wfrdmcl 7369
Description: Given 𝐹 = wrecs(𝑅, 𝐴, 𝑋) ∧ 𝑋 ∈ dom 𝐹, then its predecessor class is a subset of dom 𝐹. (Contributed by Scott Fenton, 21-Apr-2011.)
Hypothesis
Ref Expression
wfrlem6.1 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
wfrdmcl (𝑋 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝐹)

Proof of Theorem wfrdmcl
Dummy variables 𝑓 𝑔 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wfrlem6.1 . . . . . . . 8 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
2 df-wrecs 7353 . . . . . . . 8 wrecs(𝑅, 𝐴, 𝐺) = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
31, 2eqtri 2648 . . . . . . 7 𝐹 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
43dmeqi 5290 . . . . . 6 dom 𝐹 = dom {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
5 dmuni 5299 . . . . . 6 dom {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} = 𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}dom 𝑔
64, 5eqtri 2648 . . . . 5 dom 𝐹 = 𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}dom 𝑔
76eleq2i 2696 . . . 4 (𝑋 ∈ dom 𝐹𝑋 𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}dom 𝑔)
8 eliun 4495 . . . 4 (𝑋 𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}dom 𝑔 ↔ ∃𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}𝑋 ∈ dom 𝑔)
97, 8bitri 264 . . 3 (𝑋 ∈ dom 𝐹 ↔ ∃𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}𝑋 ∈ dom 𝑔)
10 eqid 2626 . . . . . . . 8 {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
1110wfrlem1 7360 . . . . . . 7 {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} = {𝑔 ∣ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))}
1211abeq2i 2738 . . . . . 6 (𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} ↔ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))))
13 predeq3 5646 . . . . . . . . . . . . 13 (𝑤 = 𝑋 → Pred(𝑅, 𝐴, 𝑤) = Pred(𝑅, 𝐴, 𝑋))
1413sseq1d 3616 . . . . . . . . . . . 12 (𝑤 = 𝑋 → (Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧 ↔ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝑧))
1514rspccv 3297 . . . . . . . . . . 11 (∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧 → (𝑋𝑧 → Pred(𝑅, 𝐴, 𝑋) ⊆ 𝑧))
1615adantl 482 . . . . . . . . . 10 ((𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) → (𝑋𝑧 → Pred(𝑅, 𝐴, 𝑋) ⊆ 𝑧))
17 fndm 5950 . . . . . . . . . . . . 13 (𝑔 Fn 𝑧 → dom 𝑔 = 𝑧)
1817eleq2d 2689 . . . . . . . . . . . 12 (𝑔 Fn 𝑧 → (𝑋 ∈ dom 𝑔𝑋𝑧))
1917sseq2d 3617 . . . . . . . . . . . 12 (𝑔 Fn 𝑧 → (Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝑔 ↔ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝑧))
2018, 19imbi12d 334 . . . . . . . . . . 11 (𝑔 Fn 𝑧 → ((𝑋 ∈ dom 𝑔 → Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝑔) ↔ (𝑋𝑧 → Pred(𝑅, 𝐴, 𝑋) ⊆ 𝑧)))
2120adantr 481 . . . . . . . . . 10 ((𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) → ((𝑋 ∈ dom 𝑔 → Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝑔) ↔ (𝑋𝑧 → Pred(𝑅, 𝐴, 𝑋) ⊆ 𝑧)))
2216, 21mpbird 247 . . . . . . . . 9 ((𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) → (𝑋 ∈ dom 𝑔 → Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝑔))
2322adantrl 751 . . . . . . . 8 ((𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧)) → (𝑋 ∈ dom 𝑔 → Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝑔))
24233adant3 1079 . . . . . . 7 ((𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))) → (𝑋 ∈ dom 𝑔 → Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝑔))
2524exlimiv 1860 . . . . . 6 (∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))) → (𝑋 ∈ dom 𝑔 → Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝑔))
2612, 25sylbi 207 . . . . 5 (𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} → (𝑋 ∈ dom 𝑔 → Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝑔))
2726reximia 3008 . . . 4 (∃𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}𝑋 ∈ dom 𝑔 → ∃𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝑔)
28 ssiun 4533 . . . 4 (∃𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝑔 → Pred(𝑅, 𝐴, 𝑋) ⊆ 𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}dom 𝑔)
2927, 28syl 17 . . 3 (∃𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}𝑋 ∈ dom 𝑔 → Pred(𝑅, 𝐴, 𝑋) ⊆ 𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}dom 𝑔)
309, 29sylbi 207 . 2 (𝑋 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑋) ⊆ 𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}dom 𝑔)
3130, 6syl6sseqr 3636 1 (𝑋 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wex 1701  wcel 1992  {cab 2612  wral 2912  wrex 2913  wss 3560   cuni 4407   ciun 4490  dom cdm 5079  cres 5081  Predcpred 5641   Fn wfn 5845  cfv 5850  wrecscwrecs 7352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3193  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-iota 5813  df-fun 5852  df-fn 5853  df-fv 5858  df-wrecs 7353
This theorem is referenced by:  wfrlem10  7370  wfrlem14  7374  wfrlem15  7375
  Copyright terms: Public domain W3C validator