MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfrlem14 Structured version   Visualization version   GIF version

Theorem wfrlem14 7957
Description: Lemma for well-founded recursion. Compute the value of 𝐶. (Contributed by Scott Fenton, 21-Apr-2011.)
Hypotheses
Ref Expression
wfrlem13.1 𝑅 We 𝐴
wfrlem13.2 𝑅 Se 𝐴
wfrlem13.3 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
wfrlem13.4 𝐶 = (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
Assertion
Ref Expression
wfrlem14 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (𝑦 ∈ (dom 𝐹 ∪ {𝑧}) → (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
Distinct variable groups:   𝑦,𝐴,𝑧   𝑦,𝐹,𝑧   𝑦,𝐺   𝑦,𝑅,𝑧   𝑦,𝐶
Allowed substitution hints:   𝐶(𝑧)   𝐺(𝑧)

Proof of Theorem wfrlem14
StepHypRef Expression
1 wfrlem13.1 . . 3 𝑅 We 𝐴
2 wfrlem13.2 . . 3 𝑅 Se 𝐴
3 wfrlem13.3 . . 3 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
4 wfrlem13.4 . . 3 𝐶 = (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
51, 2, 3, 4wfrlem13 7956 . 2 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → 𝐶 Fn (dom 𝐹 ∪ {𝑧}))
6 elun 4122 . . . 4 (𝑦 ∈ (dom 𝐹 ∪ {𝑧}) ↔ (𝑦 ∈ dom 𝐹𝑦 ∈ {𝑧}))
7 velsn 4573 . . . . 5 (𝑦 ∈ {𝑧} ↔ 𝑦 = 𝑧)
87orbi2i 906 . . . 4 ((𝑦 ∈ dom 𝐹𝑦 ∈ {𝑧}) ↔ (𝑦 ∈ dom 𝐹𝑦 = 𝑧))
96, 8bitri 276 . . 3 (𝑦 ∈ (dom 𝐹 ∪ {𝑧}) ↔ (𝑦 ∈ dom 𝐹𝑦 = 𝑧))
101, 2, 3wfrlem12 7955 . . . . . . 7 (𝑦 ∈ dom 𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))
11 fnfun 6446 . . . . . . . 8 (𝐶 Fn (dom 𝐹 ∪ {𝑧}) → Fun 𝐶)
12 ssun1 4145 . . . . . . . . . 10 𝐹 ⊆ (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
1312, 4sseqtrri 4001 . . . . . . . . 9 𝐹𝐶
14 funssfv 6684 . . . . . . . . . 10 ((Fun 𝐶𝐹𝐶𝑦 ∈ dom 𝐹) → (𝐶𝑦) = (𝐹𝑦))
153wfrdmcl 7952 . . . . . . . . . . . 12 (𝑦 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝐹)
16 fun2ssres 6392 . . . . . . . . . . . 12 ((Fun 𝐶𝐹𝐶 ∧ Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝐹) → (𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))
1715, 16syl3an3 1157 . . . . . . . . . . 11 ((Fun 𝐶𝐹𝐶𝑦 ∈ dom 𝐹) → (𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))
1817fveq2d 6667 . . . . . . . . . 10 ((Fun 𝐶𝐹𝐶𝑦 ∈ dom 𝐹) → (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))
1914, 18eqeq12d 2834 . . . . . . . . 9 ((Fun 𝐶𝐹𝐶𝑦 ∈ dom 𝐹) → ((𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))
2013, 19mp3an2 1440 . . . . . . . 8 ((Fun 𝐶𝑦 ∈ dom 𝐹) → ((𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))
2111, 20sylan 580 . . . . . . 7 ((𝐶 Fn (dom 𝐹 ∪ {𝑧}) ∧ 𝑦 ∈ dom 𝐹) → ((𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))
2210, 21syl5ibr 247 . . . . . 6 ((𝐶 Fn (dom 𝐹 ∪ {𝑧}) ∧ 𝑦 ∈ dom 𝐹) → (𝑦 ∈ dom 𝐹 → (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
2322ex 413 . . . . 5 (𝐶 Fn (dom 𝐹 ∪ {𝑧}) → (𝑦 ∈ dom 𝐹 → (𝑦 ∈ dom 𝐹 → (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))))))
2423pm2.43d 53 . . . 4 (𝐶 Fn (dom 𝐹 ∪ {𝑧}) → (𝑦 ∈ dom 𝐹 → (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
25 vsnid 4592 . . . . . . 7 𝑧 ∈ {𝑧}
26 elun2 4150 . . . . . . 7 (𝑧 ∈ {𝑧} → 𝑧 ∈ (dom 𝐹 ∪ {𝑧}))
2725, 26ax-mp 5 . . . . . 6 𝑧 ∈ (dom 𝐹 ∪ {𝑧})
284reseq1i 5842 . . . . . . . . . . . . 13 (𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)) = ((𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) ↾ Pred(𝑅, 𝐴, 𝑧))
29 resundir 5861 . . . . . . . . . . . . 13 ((𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) ↾ Pred(𝑅, 𝐴, 𝑧)) = ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ ({⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ↾ Pred(𝑅, 𝐴, 𝑧)))
30 wefr 5538 . . . . . . . . . . . . . . . . 17 (𝑅 We 𝐴𝑅 Fr 𝐴)
311, 30ax-mp 5 . . . . . . . . . . . . . . . 16 𝑅 Fr 𝐴
32 predfrirr 6170 . . . . . . . . . . . . . . . 16 (𝑅 Fr 𝐴 → ¬ 𝑧 ∈ Pred(𝑅, 𝐴, 𝑧))
33 ressnop0 6907 . . . . . . . . . . . . . . . 16 𝑧 ∈ Pred(𝑅, 𝐴, 𝑧) → ({⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ↾ Pred(𝑅, 𝐴, 𝑧)) = ∅)
3431, 32, 33mp2b 10 . . . . . . . . . . . . . . 15 ({⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ↾ Pred(𝑅, 𝐴, 𝑧)) = ∅
3534uneq2i 4133 . . . . . . . . . . . . . 14 ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ ({⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ↾ Pred(𝑅, 𝐴, 𝑧))) = ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ ∅)
36 un0 4341 . . . . . . . . . . . . . 14 ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ ∅) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))
3735, 36eqtri 2841 . . . . . . . . . . . . 13 ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ ({⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ↾ Pred(𝑅, 𝐴, 𝑧))) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))
3828, 29, 373eqtri 2845 . . . . . . . . . . . 12 (𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))
3938fveq2i 6666 . . . . . . . . . . 11 (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧))) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))
4039opeq2i 4799 . . . . . . . . . 10 𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩ = ⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩
41 opex 5347 . . . . . . . . . . 11 𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩ ∈ V
4241elsn 4572 . . . . . . . . . 10 (⟨𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩ ∈ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ↔ ⟨𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩ = ⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩)
4340, 42mpbir 232 . . . . . . . . 9 𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩ ∈ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}
44 elun2 4150 . . . . . . . . 9 (⟨𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩ ∈ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} → ⟨𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩ ∈ (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}))
4543, 44ax-mp 5 . . . . . . . 8 𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩ ∈ (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
4645, 4eleqtrri 2909 . . . . . . 7 𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩ ∈ 𝐶
47 fnopfvb 6712 . . . . . . 7 ((𝐶 Fn (dom 𝐹 ∪ {𝑧}) ∧ 𝑧 ∈ (dom 𝐹 ∪ {𝑧})) → ((𝐶𝑧) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧))) ↔ ⟨𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩ ∈ 𝐶))
4846, 47mpbiri 259 . . . . . 6 ((𝐶 Fn (dom 𝐹 ∪ {𝑧}) ∧ 𝑧 ∈ (dom 𝐹 ∪ {𝑧})) → (𝐶𝑧) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧))))
4927, 48mpan2 687 . . . . 5 (𝐶 Fn (dom 𝐹 ∪ {𝑧}) → (𝐶𝑧) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧))))
50 fveq2 6663 . . . . . 6 (𝑦 = 𝑧 → (𝐶𝑦) = (𝐶𝑧))
51 predeq3 6145 . . . . . . . 8 (𝑦 = 𝑧 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑧))
5251reseq2d 5846 . . . . . . 7 (𝑦 = 𝑧 → (𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))
5352fveq2d 6667 . . . . . 6 (𝑦 = 𝑧 → (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧))))
5450, 53eqeq12d 2834 . . . . 5 (𝑦 = 𝑧 → ((𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝐶𝑧) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))))
5549, 54syl5ibrcom 248 . . . 4 (𝐶 Fn (dom 𝐹 ∪ {𝑧}) → (𝑦 = 𝑧 → (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
5624, 55jaod 853 . . 3 (𝐶 Fn (dom 𝐹 ∪ {𝑧}) → ((𝑦 ∈ dom 𝐹𝑦 = 𝑧) → (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
579, 56syl5bi 243 . 2 (𝐶 Fn (dom 𝐹 ∪ {𝑧}) → (𝑦 ∈ (dom 𝐹 ∪ {𝑧}) → (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
585, 57syl 17 1 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (𝑦 ∈ (dom 𝐹 ∪ {𝑧}) → (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 841  w3a 1079   = wceq 1528  wcel 2105  cdif 3930  cun 3931  wss 3933  c0 4288  {csn 4557  cop 4563   Fr wfr 5504   Se wse 5505   We wwe 5506  dom cdm 5548  cres 5550  Predcpred 6140  Fun wfun 6342   Fn wfn 6343  cfv 6348  wrecscwrecs 7935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-iota 6307  df-fun 6350  df-fn 6351  df-fv 6356  df-wrecs 7936
This theorem is referenced by:  wfrlem15  7958
  Copyright terms: Public domain W3C validator