MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wilthlem3 Structured version   Visualization version   GIF version

Theorem wilthlem3 24709
Description: Lemma for wilth 24710. Here we round out the argument of wilthlem2 24708 with the final step of the induction. The induction argument shows that every subset of 1...(𝑃 − 1) that is closed under inverse and contains 𝑃 − 1 multiplies to -1 mod 𝑃, and clearly 1...(𝑃 − 1) itself is such a set. Thus, the product of all the elements is -1, and all that is left is to translate the group sum notation (which we used for its unordered summing capabilities) into an ordered sequence to match the definition of the factorial. (Contributed by Mario Carneiro, 24-Jan-2015.) (Proof shortened by AV, 27-Jul-2019.)
Hypotheses
Ref Expression
wilthlem.t 𝑇 = (mulGrp‘ℂfld)
wilthlem.a 𝐴 = {𝑥 ∈ 𝒫 (1...(𝑃 − 1)) ∣ ((𝑃 − 1) ∈ 𝑥 ∧ ∀𝑦𝑥 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥)}
Assertion
Ref Expression
wilthlem3 (𝑃 ∈ ℙ → 𝑃 ∥ ((!‘(𝑃 − 1)) + 1))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑃,𝑦   𝑥,𝑇,𝑦

Proof of Theorem wilthlem3
Dummy variables 𝑡 𝑠 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmuz2 15339 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
2 uz2m1nn 11714 . . . . . . . 8 (𝑃 ∈ (ℤ‘2) → (𝑃 − 1) ∈ ℕ)
31, 2syl 17 . . . . . . 7 (𝑃 ∈ ℙ → (𝑃 − 1) ∈ ℕ)
4 nnuz 11674 . . . . . . 7 ℕ = (ℤ‘1)
53, 4syl6eleq 2708 . . . . . 6 (𝑃 ∈ ℙ → (𝑃 − 1) ∈ (ℤ‘1))
6 eluzfz2 12298 . . . . . 6 ((𝑃 − 1) ∈ (ℤ‘1) → (𝑃 − 1) ∈ (1...(𝑃 − 1)))
75, 6syl 17 . . . . 5 (𝑃 ∈ ℙ → (𝑃 − 1) ∈ (1...(𝑃 − 1)))
8 simpl 473 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑦 ∈ (1...(𝑃 − 1))) → 𝑃 ∈ ℙ)
9 elfzelz 12291 . . . . . . . . 9 (𝑦 ∈ (1...(𝑃 − 1)) → 𝑦 ∈ ℤ)
109adantl 482 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑦 ∈ (1...(𝑃 − 1))) → 𝑦 ∈ ℤ)
11 prmnn 15319 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
12 fzm1ndvds 14975 . . . . . . . . 9 ((𝑃 ∈ ℕ ∧ 𝑦 ∈ (1...(𝑃 − 1))) → ¬ 𝑃𝑦)
1311, 12sylan 488 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑦 ∈ (1...(𝑃 − 1))) → ¬ 𝑃𝑦)
14 eqid 2621 . . . . . . . . 9 ((𝑦↑(𝑃 − 2)) mod 𝑃) = ((𝑦↑(𝑃 − 2)) mod 𝑃)
1514prmdiv 15421 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑦 ∈ ℤ ∧ ¬ 𝑃𝑦) → (((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝑦 · ((𝑦↑(𝑃 − 2)) mod 𝑃)) − 1)))
168, 10, 13, 15syl3anc 1323 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑦 ∈ (1...(𝑃 − 1))) → (((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝑦 · ((𝑦↑(𝑃 − 2)) mod 𝑃)) − 1)))
1716simpld 475 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑦 ∈ (1...(𝑃 − 1))) → ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)))
1817ralrimiva 2961 . . . . 5 (𝑃 ∈ ℙ → ∀𝑦 ∈ (1...(𝑃 − 1))((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)))
19 ovex 6638 . . . . . . 7 (1...(𝑃 − 1)) ∈ V
2019pwid 4150 . . . . . 6 (1...(𝑃 − 1)) ∈ 𝒫 (1...(𝑃 − 1))
21 eleq2 2687 . . . . . . . 8 (𝑥 = (1...(𝑃 − 1)) → ((𝑃 − 1) ∈ 𝑥 ↔ (𝑃 − 1) ∈ (1...(𝑃 − 1))))
22 eleq2 2687 . . . . . . . . 9 (𝑥 = (1...(𝑃 − 1)) → (((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥 ↔ ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1))))
2322raleqbi1dv 3138 . . . . . . . 8 (𝑥 = (1...(𝑃 − 1)) → (∀𝑦𝑥 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥 ↔ ∀𝑦 ∈ (1...(𝑃 − 1))((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1))))
2421, 23anbi12d 746 . . . . . . 7 (𝑥 = (1...(𝑃 − 1)) → (((𝑃 − 1) ∈ 𝑥 ∧ ∀𝑦𝑥 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥) ↔ ((𝑃 − 1) ∈ (1...(𝑃 − 1)) ∧ ∀𝑦 ∈ (1...(𝑃 − 1))((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)))))
25 wilthlem.a . . . . . . 7 𝐴 = {𝑥 ∈ 𝒫 (1...(𝑃 − 1)) ∣ ((𝑃 − 1) ∈ 𝑥 ∧ ∀𝑦𝑥 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥)}
2624, 25elrab2 3352 . . . . . 6 ((1...(𝑃 − 1)) ∈ 𝐴 ↔ ((1...(𝑃 − 1)) ∈ 𝒫 (1...(𝑃 − 1)) ∧ ((𝑃 − 1) ∈ (1...(𝑃 − 1)) ∧ ∀𝑦 ∈ (1...(𝑃 − 1))((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)))))
2720, 26mpbiran 952 . . . . 5 ((1...(𝑃 − 1)) ∈ 𝐴 ↔ ((𝑃 − 1) ∈ (1...(𝑃 − 1)) ∧ ∀𝑦 ∈ (1...(𝑃 − 1))((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1))))
287, 18, 27sylanbrc 697 . . . 4 (𝑃 ∈ ℙ → (1...(𝑃 − 1)) ∈ 𝐴)
29 fzfi 12718 . . . . 5 (1...(𝑃 − 1)) ∈ Fin
30 eleq1 2686 . . . . . . . 8 (𝑠 = 𝑡 → (𝑠𝐴𝑡𝐴))
31 reseq2 5356 . . . . . . . . . . 11 (𝑠 = 𝑡 → ( I ↾ 𝑠) = ( I ↾ 𝑡))
3231oveq2d 6626 . . . . . . . . . 10 (𝑠 = 𝑡 → (𝑇 Σg ( I ↾ 𝑠)) = (𝑇 Σg ( I ↾ 𝑡)))
3332oveq1d 6625 . . . . . . . . 9 (𝑠 = 𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = ((𝑇 Σg ( I ↾ 𝑡)) mod 𝑃))
3433eqeq1d 2623 . . . . . . . 8 (𝑠 = 𝑡 → (((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃) ↔ ((𝑇 Σg ( I ↾ 𝑡)) mod 𝑃) = (-1 mod 𝑃)))
3530, 34imbi12d 334 . . . . . . 7 (𝑠 = 𝑡 → ((𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)) ↔ (𝑡𝐴 → ((𝑇 Σg ( I ↾ 𝑡)) mod 𝑃) = (-1 mod 𝑃))))
3635imbi2d 330 . . . . . 6 (𝑠 = 𝑡 → ((𝑃 ∈ ℙ → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃))) ↔ (𝑃 ∈ ℙ → (𝑡𝐴 → ((𝑇 Σg ( I ↾ 𝑡)) mod 𝑃) = (-1 mod 𝑃)))))
37 eleq1 2686 . . . . . . . 8 (𝑠 = (1...(𝑃 − 1)) → (𝑠𝐴 ↔ (1...(𝑃 − 1)) ∈ 𝐴))
38 reseq2 5356 . . . . . . . . . . 11 (𝑠 = (1...(𝑃 − 1)) → ( I ↾ 𝑠) = ( I ↾ (1...(𝑃 − 1))))
3938oveq2d 6626 . . . . . . . . . 10 (𝑠 = (1...(𝑃 − 1)) → (𝑇 Σg ( I ↾ 𝑠)) = (𝑇 Σg ( I ↾ (1...(𝑃 − 1)))))
4039oveq1d 6625 . . . . . . . . 9 (𝑠 = (1...(𝑃 − 1)) → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) mod 𝑃))
4140eqeq1d 2623 . . . . . . . 8 (𝑠 = (1...(𝑃 − 1)) → (((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃) ↔ ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) mod 𝑃) = (-1 mod 𝑃)))
4237, 41imbi12d 334 . . . . . . 7 (𝑠 = (1...(𝑃 − 1)) → ((𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)) ↔ ((1...(𝑃 − 1)) ∈ 𝐴 → ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) mod 𝑃) = (-1 mod 𝑃))))
4342imbi2d 330 . . . . . 6 (𝑠 = (1...(𝑃 − 1)) → ((𝑃 ∈ ℙ → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃))) ↔ (𝑃 ∈ ℙ → ((1...(𝑃 − 1)) ∈ 𝐴 → ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) mod 𝑃) = (-1 mod 𝑃)))))
44 bi2.04 376 . . . . . . . . . . 11 ((𝑠𝑡 → (𝑃 ∈ ℙ → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))) ↔ (𝑃 ∈ ℙ → (𝑠𝑡 → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))))
45 pm2.27 42 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → ((𝑃 ∈ ℙ → (𝑠𝑡 → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))) → (𝑠𝑡 → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))))
4645com34 91 . . . . . . . . . . 11 (𝑃 ∈ ℙ → ((𝑃 ∈ ℙ → (𝑠𝑡 → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))) → (𝑠𝐴 → (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))))
4744, 46syl5bi 232 . . . . . . . . . 10 (𝑃 ∈ ℙ → ((𝑠𝑡 → (𝑃 ∈ ℙ → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))) → (𝑠𝐴 → (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))))
4847alimdv 1842 . . . . . . . . 9 (𝑃 ∈ ℙ → (∀𝑠(𝑠𝑡 → (𝑃 ∈ ℙ → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))) → ∀𝑠(𝑠𝐴 → (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))))
49 df-ral 2912 . . . . . . . . 9 (∀𝑠𝐴 (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)) ↔ ∀𝑠(𝑠𝐴 → (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃))))
5048, 49syl6ibr 242 . . . . . . . 8 (𝑃 ∈ ℙ → (∀𝑠(𝑠𝑡 → (𝑃 ∈ ℙ → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))) → ∀𝑠𝐴 (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃))))
51 wilthlem.t . . . . . . . . . 10 𝑇 = (mulGrp‘ℂfld)
52 simp1 1059 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ ∀𝑠𝐴 (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)) ∧ 𝑡𝐴) → 𝑃 ∈ ℙ)
53 simp3 1061 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ ∀𝑠𝐴 (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)) ∧ 𝑡𝐴) → 𝑡𝐴)
54 simp2 1060 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ ∀𝑠𝐴 (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)) ∧ 𝑡𝐴) → ∀𝑠𝐴 (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))
5551, 25, 52, 53, 54wilthlem2 24708 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ ∀𝑠𝐴 (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)) ∧ 𝑡𝐴) → ((𝑇 Σg ( I ↾ 𝑡)) mod 𝑃) = (-1 mod 𝑃))
56553exp 1261 . . . . . . . 8 (𝑃 ∈ ℙ → (∀𝑠𝐴 (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)) → (𝑡𝐴 → ((𝑇 Σg ( I ↾ 𝑡)) mod 𝑃) = (-1 mod 𝑃))))
5750, 56syldc 48 . . . . . . 7 (∀𝑠(𝑠𝑡 → (𝑃 ∈ ℙ → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))) → (𝑃 ∈ ℙ → (𝑡𝐴 → ((𝑇 Σg ( I ↾ 𝑡)) mod 𝑃) = (-1 mod 𝑃))))
5857a1i 11 . . . . . 6 (𝑡 ∈ Fin → (∀𝑠(𝑠𝑡 → (𝑃 ∈ ℙ → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))) → (𝑃 ∈ ℙ → (𝑡𝐴 → ((𝑇 Σg ( I ↾ 𝑡)) mod 𝑃) = (-1 mod 𝑃)))))
5936, 43, 58findcard3 8154 . . . . 5 ((1...(𝑃 − 1)) ∈ Fin → (𝑃 ∈ ℙ → ((1...(𝑃 − 1)) ∈ 𝐴 → ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) mod 𝑃) = (-1 mod 𝑃))))
6029, 59ax-mp 5 . . . 4 (𝑃 ∈ ℙ → ((1...(𝑃 − 1)) ∈ 𝐴 → ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) mod 𝑃) = (-1 mod 𝑃)))
6128, 60mpd 15 . . 3 (𝑃 ∈ ℙ → ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) mod 𝑃) = (-1 mod 𝑃))
62 cnfld1 19699 . . . . . 6 1 = (1r‘ℂfld)
6351, 62ringidval 18431 . . . . 5 1 = (0g𝑇)
64 cncrng 19695 . . . . . 6 fld ∈ CRing
6551crngmgp 18483 . . . . . 6 (ℂfld ∈ CRing → 𝑇 ∈ CMnd)
6664, 65mp1i 13 . . . . 5 (𝑃 ∈ ℙ → 𝑇 ∈ CMnd)
6729a1i 11 . . . . 5 (𝑃 ∈ ℙ → (1...(𝑃 − 1)) ∈ Fin)
68 zsubrg 19727 . . . . . 6 ℤ ∈ (SubRing‘ℂfld)
6951subrgsubm 18721 . . . . . 6 (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubMnd‘𝑇))
7068, 69mp1i 13 . . . . 5 (𝑃 ∈ ℙ → ℤ ∈ (SubMnd‘𝑇))
71 f1oi 6136 . . . . . . . 8 ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))–1-1-onto→(1...(𝑃 − 1))
72 f1of 6099 . . . . . . . 8 (( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))–1-1-onto→(1...(𝑃 − 1)) → ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶(1...(𝑃 − 1)))
7371, 72ax-mp 5 . . . . . . 7 ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶(1...(𝑃 − 1))
749ssriv 3591 . . . . . . 7 (1...(𝑃 − 1)) ⊆ ℤ
75 fss 6018 . . . . . . 7 ((( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶(1...(𝑃 − 1)) ∧ (1...(𝑃 − 1)) ⊆ ℤ) → ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶ℤ)
7673, 74, 75mp2an 707 . . . . . 6 ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶ℤ
7776a1i 11 . . . . 5 (𝑃 ∈ ℙ → ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶ℤ)
78 1ex 9986 . . . . . . 7 1 ∈ V
7978a1i 11 . . . . . 6 (𝑃 ∈ ℙ → 1 ∈ V)
8077, 67, 79fdmfifsupp 8236 . . . . 5 (𝑃 ∈ ℙ → ( I ↾ (1...(𝑃 − 1))) finSupp 1)
8163, 66, 67, 70, 77, 80gsumsubmcl 18247 . . . 4 (𝑃 ∈ ℙ → (𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) ∈ ℤ)
82 1z 11358 . . . . 5 1 ∈ ℤ
83 znegcl 11363 . . . . 5 (1 ∈ ℤ → -1 ∈ ℤ)
8482, 83mp1i 13 . . . 4 (𝑃 ∈ ℙ → -1 ∈ ℤ)
85 moddvds 14922 . . . 4 ((𝑃 ∈ ℕ ∧ (𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) ∈ ℤ ∧ -1 ∈ ℤ) → (((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) mod 𝑃) = (-1 mod 𝑃) ↔ 𝑃 ∥ ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) − -1)))
8611, 81, 84, 85syl3anc 1323 . . 3 (𝑃 ∈ ℙ → (((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) mod 𝑃) = (-1 mod 𝑃) ↔ 𝑃 ∥ ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) − -1)))
8761, 86mpbid 222 . 2 (𝑃 ∈ ℙ → 𝑃 ∥ ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) − -1))
88 fcoi1 6040 . . . . . . . . . 10 (( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶(1...(𝑃 − 1)) → (( I ↾ (1...(𝑃 − 1))) ∘ ( I ↾ (1...(𝑃 − 1)))) = ( I ↾ (1...(𝑃 − 1))))
8973, 88ax-mp 5 . . . . . . . . 9 (( I ↾ (1...(𝑃 − 1))) ∘ ( I ↾ (1...(𝑃 − 1)))) = ( I ↾ (1...(𝑃 − 1)))
9089fveq1i 6154 . . . . . . . 8 ((( I ↾ (1...(𝑃 − 1))) ∘ ( I ↾ (1...(𝑃 − 1))))‘𝑘) = (( I ↾ (1...(𝑃 − 1)))‘𝑘)
91 fvres 6169 . . . . . . . 8 (𝑘 ∈ (1...(𝑃 − 1)) → (( I ↾ (1...(𝑃 − 1)))‘𝑘) = ( I ‘𝑘))
9290, 91syl5eq 2667 . . . . . . 7 (𝑘 ∈ (1...(𝑃 − 1)) → ((( I ↾ (1...(𝑃 − 1))) ∘ ( I ↾ (1...(𝑃 − 1))))‘𝑘) = ( I ‘𝑘))
9392adantl 482 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑘 ∈ (1...(𝑃 − 1))) → ((( I ↾ (1...(𝑃 − 1))) ∘ ( I ↾ (1...(𝑃 − 1))))‘𝑘) = ( I ‘𝑘))
945, 93seqfveq 12772 . . . . 5 (𝑃 ∈ ℙ → (seq1( · , (( I ↾ (1...(𝑃 − 1))) ∘ ( I ↾ (1...(𝑃 − 1)))))‘(𝑃 − 1)) = (seq1( · , I )‘(𝑃 − 1)))
95 cnfldbas 19678 . . . . . . 7 ℂ = (Base‘ℂfld)
9651, 95mgpbas 18423 . . . . . 6 ℂ = (Base‘𝑇)
97 cnfldmul 19680 . . . . . . 7 · = (.r‘ℂfld)
9851, 97mgpplusg 18421 . . . . . 6 · = (+g𝑇)
99 eqid 2621 . . . . . 6 (Cntz‘𝑇) = (Cntz‘𝑇)
100 cnring 19696 . . . . . . 7 fld ∈ Ring
10151ringmgp 18481 . . . . . . 7 (ℂfld ∈ Ring → 𝑇 ∈ Mnd)
102100, 101mp1i 13 . . . . . 6 (𝑃 ∈ ℙ → 𝑇 ∈ Mnd)
103 zsscn 11336 . . . . . . . 8 ℤ ⊆ ℂ
104 fss 6018 . . . . . . . 8 ((( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶ℤ ∧ ℤ ⊆ ℂ) → ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶ℂ)
10576, 103, 104mp2an 707 . . . . . . 7 ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶ℂ
106105a1i 11 . . . . . 6 (𝑃 ∈ ℙ → ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶ℂ)
10796, 99, 66, 106cntzcmnf 18176 . . . . . 6 (𝑃 ∈ ℙ → ran ( I ↾ (1...(𝑃 − 1))) ⊆ ((Cntz‘𝑇)‘ran ( I ↾ (1...(𝑃 − 1)))))
108 f1of1 6098 . . . . . . 7 (( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))–1-1-onto→(1...(𝑃 − 1)) → ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))–1-1→(1...(𝑃 − 1)))
10971, 108mp1i 13 . . . . . 6 (𝑃 ∈ ℙ → ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))–1-1→(1...(𝑃 − 1)))
110 suppssdm 7260 . . . . . . . . 9 (( I ↾ (1...(𝑃 − 1))) supp 1) ⊆ dom ( I ↾ (1...(𝑃 − 1)))
111 dmresi 5421 . . . . . . . . 9 dom ( I ↾ (1...(𝑃 − 1))) = (1...(𝑃 − 1))
112110, 111sseqtri 3621 . . . . . . . 8 (( I ↾ (1...(𝑃 − 1))) supp 1) ⊆ (1...(𝑃 − 1))
113 rnresi 5443 . . . . . . . 8 ran ( I ↾ (1...(𝑃 − 1))) = (1...(𝑃 − 1))
114112, 113sseqtr4i 3622 . . . . . . 7 (( I ↾ (1...(𝑃 − 1))) supp 1) ⊆ ran ( I ↾ (1...(𝑃 − 1)))
115114a1i 11 . . . . . 6 (𝑃 ∈ ℙ → (( I ↾ (1...(𝑃 − 1))) supp 1) ⊆ ran ( I ↾ (1...(𝑃 − 1))))
116 eqid 2621 . . . . . 6 ((( I ↾ (1...(𝑃 − 1))) ∘ ( I ↾ (1...(𝑃 − 1)))) supp 1) = ((( I ↾ (1...(𝑃 − 1))) ∘ ( I ↾ (1...(𝑃 − 1)))) supp 1)
11796, 63, 98, 99, 102, 67, 106, 107, 3, 109, 115, 116gsumval3 18236 . . . . 5 (𝑃 ∈ ℙ → (𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) = (seq1( · , (( I ↾ (1...(𝑃 − 1))) ∘ ( I ↾ (1...(𝑃 − 1)))))‘(𝑃 − 1)))
118 facnn 13009 . . . . . 6 ((𝑃 − 1) ∈ ℕ → (!‘(𝑃 − 1)) = (seq1( · , I )‘(𝑃 − 1)))
1193, 118syl 17 . . . . 5 (𝑃 ∈ ℙ → (!‘(𝑃 − 1)) = (seq1( · , I )‘(𝑃 − 1)))
12094, 117, 1193eqtr4d 2665 . . . 4 (𝑃 ∈ ℙ → (𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) = (!‘(𝑃 − 1)))
121120oveq1d 6625 . . 3 (𝑃 ∈ ℙ → ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) − -1) = ((!‘(𝑃 − 1)) − -1))
122 nnm1nn0 11285 . . . . . . 7 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
12311, 122syl 17 . . . . . 6 (𝑃 ∈ ℙ → (𝑃 − 1) ∈ ℕ0)
124 faccl 13017 . . . . . 6 ((𝑃 − 1) ∈ ℕ0 → (!‘(𝑃 − 1)) ∈ ℕ)
125123, 124syl 17 . . . . 5 (𝑃 ∈ ℙ → (!‘(𝑃 − 1)) ∈ ℕ)
126125nncnd 10987 . . . 4 (𝑃 ∈ ℙ → (!‘(𝑃 − 1)) ∈ ℂ)
127 ax-1cn 9945 . . . 4 1 ∈ ℂ
128 subneg 10281 . . . 4 (((!‘(𝑃 − 1)) ∈ ℂ ∧ 1 ∈ ℂ) → ((!‘(𝑃 − 1)) − -1) = ((!‘(𝑃 − 1)) + 1))
129126, 127, 128sylancl 693 . . 3 (𝑃 ∈ ℙ → ((!‘(𝑃 − 1)) − -1) = ((!‘(𝑃 − 1)) + 1))
130121, 129eqtrd 2655 . 2 (𝑃 ∈ ℙ → ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) − -1) = ((!‘(𝑃 − 1)) + 1))
13187, 130breqtrd 4644 1 (𝑃 ∈ ℙ → 𝑃 ∥ ((!‘(𝑃 − 1)) + 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036  wal 1478   = wceq 1480  wcel 1987  wral 2907  {crab 2911  Vcvv 3189  wss 3559  wpss 3560  𝒫 cpw 4135   class class class wbr 4618   I cid 4989  dom cdm 5079  ran crn 5080  cres 5081  ccom 5083  wf 5848  1-1wf1 5849  1-1-ontowf1o 5851  cfv 5852  (class class class)co 6610   supp csupp 7247  Fincfn 7906  cc 9885  1c1 9888   + caddc 9890   · cmul 9892  cmin 10217  -cneg 10218  cn 10971  2c2 11021  0cn0 11243  cz 11328  cuz 11638  ...cfz 12275   mod cmo 12615  seqcseq 12748  cexp 12807  !cfa 13007  cdvds 14914  cprime 15316   Σg cgsu 16029  Mndcmnd 17222  SubMndcsubmnd 17262  Cntzccntz 17676  CMndccmn 18121  mulGrpcmgp 18417  Ringcrg 18475  CRingccrg 18476  SubRingcsubrg 18704  fldccnfld 19674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8489  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-pre-sup 9965  ax-addf 9966  ax-mulf 9967
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-map 7811  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-fsupp 8227  df-sup 8299  df-inf 8300  df-oi 8366  df-card 8716  df-cda 8941  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-div 10636  df-nn 10972  df-2 11030  df-3 11031  df-4 11032  df-5 11033  df-6 11034  df-7 11035  df-8 11036  df-9 11037  df-n0 11244  df-xnn0 11315  df-z 11329  df-dec 11445  df-uz 11639  df-rp 11784  df-fz 12276  df-fzo 12414  df-fl 12540  df-mod 12616  df-seq 12749  df-exp 12808  df-fac 13008  df-hash 13065  df-cj 13780  df-re 13781  df-im 13782  df-sqrt 13916  df-abs 13917  df-dvds 14915  df-gcd 15148  df-prm 15317  df-phi 15402  df-struct 15790  df-ndx 15791  df-slot 15792  df-base 15793  df-sets 15794  df-ress 15795  df-plusg 15882  df-mulr 15883  df-starv 15884  df-tset 15888  df-ple 15889  df-ds 15892  df-unif 15893  df-0g 16030  df-gsum 16031  df-mre 16174  df-mrc 16175  df-acs 16177  df-mgm 17170  df-sgrp 17212  df-mnd 17223  df-submnd 17264  df-grp 17353  df-minusg 17354  df-mulg 17469  df-subg 17519  df-cntz 17678  df-cmn 18123  df-mgp 18418  df-ur 18430  df-ring 18477  df-cring 18478  df-subrg 18706  df-cnfld 19675
This theorem is referenced by:  wilth  24710
  Copyright terms: Public domain W3C validator