MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  winaon Structured version   Visualization version   GIF version

Theorem winaon 9495
Description: A weakly inaccessible cardinal is an ordinal. (Contributed by Mario Carneiro, 29-May-2014.)
Assertion
Ref Expression
winaon (𝐴 ∈ Inaccw𝐴 ∈ On)

Proof of Theorem winaon
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elwina 9493 . 2 (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
2 cfon 9062 . . . 4 (cf‘𝐴) ∈ On
3 eleq1 2687 . . . 4 ((cf‘𝐴) = 𝐴 → ((cf‘𝐴) ∈ On ↔ 𝐴 ∈ On))
42, 3mpbii 223 . . 3 ((cf‘𝐴) = 𝐴𝐴 ∈ On)
543ad2ant2 1081 . 2 ((𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → 𝐴 ∈ On)
61, 5sylbi 207 1 (𝐴 ∈ Inaccw𝐴 ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1036   = wceq 1481  wcel 1988  wne 2791  wral 2909  wrex 2910  c0 3907   class class class wbr 4644  Oncon0 5711  cfv 5876  csdm 7939  cfccf 8748  Inaccwcwina 9489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-rab 2918  df-v 3197  df-sbc 3430  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-ord 5714  df-on 5715  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-er 7727  df-en 7941  df-card 8750  df-cf 8752  df-wina 9491
This theorem is referenced by:  inar1  9582  inatsk  9585  grur1a  9626  grur1  9627  inaprc  9643
  Copyright terms: Public domain W3C validator