MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wkslem1 Structured version   Visualization version   GIF version

Theorem wkslem1 27383
Description: Lemma 1 for walks to substitute the index of the condition for vertices and edges in a walk. (Contributed by AV, 23-Apr-2021.)
Assertion
Ref Expression
wkslem1 (𝐴 = 𝐵 → (if-((𝑃𝐴) = (𝑃‘(𝐴 + 1)), (𝐼‘(𝐹𝐴)) = {(𝑃𝐴)}, {(𝑃𝐴), (𝑃‘(𝐴 + 1))} ⊆ (𝐼‘(𝐹𝐴))) ↔ if-((𝑃𝐵) = (𝑃‘(𝐵 + 1)), (𝐼‘(𝐹𝐵)) = {(𝑃𝐵)}, {(𝑃𝐵), (𝑃‘(𝐵 + 1))} ⊆ (𝐼‘(𝐹𝐵)))))

Proof of Theorem wkslem1
StepHypRef Expression
1 fveq2 6664 . . 3 (𝐴 = 𝐵 → (𝑃𝐴) = (𝑃𝐵))
2 fvoveq1 7173 . . 3 (𝐴 = 𝐵 → (𝑃‘(𝐴 + 1)) = (𝑃‘(𝐵 + 1)))
31, 2eqeq12d 2837 . 2 (𝐴 = 𝐵 → ((𝑃𝐴) = (𝑃‘(𝐴 + 1)) ↔ (𝑃𝐵) = (𝑃‘(𝐵 + 1))))
4 2fveq3 6669 . . 3 (𝐴 = 𝐵 → (𝐼‘(𝐹𝐴)) = (𝐼‘(𝐹𝐵)))
51sneqd 4572 . . 3 (𝐴 = 𝐵 → {(𝑃𝐴)} = {(𝑃𝐵)})
64, 5eqeq12d 2837 . 2 (𝐴 = 𝐵 → ((𝐼‘(𝐹𝐴)) = {(𝑃𝐴)} ↔ (𝐼‘(𝐹𝐵)) = {(𝑃𝐵)}))
71, 2preq12d 4670 . . 3 (𝐴 = 𝐵 → {(𝑃𝐴), (𝑃‘(𝐴 + 1))} = {(𝑃𝐵), (𝑃‘(𝐵 + 1))})
87, 4sseq12d 3999 . 2 (𝐴 = 𝐵 → ({(𝑃𝐴), (𝑃‘(𝐴 + 1))} ⊆ (𝐼‘(𝐹𝐴)) ↔ {(𝑃𝐵), (𝑃‘(𝐵 + 1))} ⊆ (𝐼‘(𝐹𝐵))))
93, 6, 8ifpbi123d 1072 1 (𝐴 = 𝐵 → (if-((𝑃𝐴) = (𝑃‘(𝐴 + 1)), (𝐼‘(𝐹𝐴)) = {(𝑃𝐴)}, {(𝑃𝐴), (𝑃‘(𝐴 + 1))} ⊆ (𝐼‘(𝐹𝐴))) ↔ if-((𝑃𝐵) = (𝑃‘(𝐵 + 1)), (𝐼‘(𝐹𝐵)) = {(𝑃𝐵)}, {(𝑃𝐵), (𝑃‘(𝐵 + 1))} ⊆ (𝐼‘(𝐹𝐵)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  if-wif 1057   = wceq 1533  wss 3935  {csn 4560  {cpr 4562  cfv 6349  (class class class)co 7150  1c1 10532   + caddc 10534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1058  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-iota 6308  df-fv 6357  df-ov 7153
This theorem is referenced by:  wlk1walk  27414  wlkres  27446  wlkp1lem8  27456  crctcshwlkn0lem6  27587  crctcshwlkn0lem7  27588  crctcshwlkn0  27593  pfxwlk  32365  revwlk  32366
  Copyright terms: Public domain W3C validator