Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-19.8eqv Structured version   Visualization version   GIF version

Theorem wl-19.8eqv 33280
Description: Under the assumption ¬ 𝑥 = 𝑦 a specialized version of 19.8a 2050 is provable from Tarski's FOL and ax13v 2245 only. Note that this reverts the implication in ax13lem2 2294, so in fact 𝑥 = 𝑦 → (∃𝑥𝑧 = 𝑦𝑧 = 𝑦)) holds. (Contributed by Wolf Lammen, 17-Apr-2021.)
Assertion
Ref Expression
wl-19.8eqv 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∃𝑥 𝑧 = 𝑦))
Distinct variable group:   𝑥,𝑧

Proof of Theorem wl-19.8eqv
StepHypRef Expression
1 ax13lem1 2246 . 2 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
2 19.2 1890 . 2 (∀𝑥 𝑧 = 𝑦 → ∃𝑥 𝑧 = 𝑦)
31, 2syl6 35 1 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∃𝑥 𝑧 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1479  wex 1702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-13 2244
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1703
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator