Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-ax11-lem2 Structured version   Visualization version   GIF version

Theorem wl-ax11-lem2 32338
Description: Lemma. (Contributed by Wolf Lammen, 30-Jun-2019.)
Assertion
Ref Expression
wl-ax11-lem2 ((∀𝑢 𝑢 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → ∀𝑥 𝑢 = 𝑦)
Distinct variable group:   𝑥,𝑢

Proof of Theorem wl-ax11-lem2
StepHypRef Expression
1 sp 2040 . . 3 (∀𝑢 𝑢 = 𝑦𝑢 = 𝑦)
2 aev 1969 . . . 4 (∀𝑥 𝑥 = 𝑢 → ∀𝑥 𝑥 = 𝑦)
3 pm2.21 118 . . . 4 (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑥 = 𝑦 → ∀𝑥 𝑥 = 𝑢))
42, 3impbid2 214 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑥 = 𝑢 ↔ ∀𝑥 𝑥 = 𝑦))
51, 4anim12i 587 . 2 ((∀𝑢 𝑢 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → (𝑢 = 𝑦 ∧ (∀𝑥 𝑥 = 𝑢 ↔ ∀𝑥 𝑥 = 𝑦)))
6 wl-aleq 32297 . 2 (∀𝑥 𝑢 = 𝑦 ↔ (𝑢 = 𝑦 ∧ (∀𝑥 𝑥 = 𝑢 ↔ ∀𝑥 𝑥 = 𝑦)))
75, 6sylibr 222 1 ((∀𝑢 𝑢 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → ∀𝑥 𝑢 = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382  wal 1472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-10 2005  ax-12 2033  ax-13 2233
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-tru 1477  df-ex 1695  df-nf 1700
This theorem is referenced by:  wl-ax11-lem3  32339
  Copyright terms: Public domain W3C validator