![]() |
Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-euequ1f | Structured version Visualization version GIF version |
Description: euequ1 2504 proved with a distinctor. (Contributed by Wolf Lammen, 23-Sep-2020.) |
Ref | Expression |
---|---|
wl-euequ1f | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ∃!𝑥 𝑥 = 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax6ev 1947 | . . 3 ⊢ ∃𝑧 𝑧 = 𝑦 | |
2 | nfv 1883 | . . . 4 ⊢ Ⅎ𝑧 ¬ ∀𝑥 𝑥 = 𝑦 | |
3 | nfnae 2351 | . . . . 5 ⊢ Ⅎ𝑥 ¬ ∀𝑥 𝑥 = 𝑦 | |
4 | nfeqf2 2333 | . . . . 5 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑧 = 𝑦) | |
5 | equequ2 1999 | . . . . . . 7 ⊢ (𝑦 = 𝑧 → (𝑥 = 𝑦 ↔ 𝑥 = 𝑧)) | |
6 | 5 | equcoms 1993 | . . . . . 6 ⊢ (𝑧 = 𝑦 → (𝑥 = 𝑦 ↔ 𝑥 = 𝑧)) |
7 | 6 | a1i 11 | . . . . 5 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → (𝑥 = 𝑦 ↔ 𝑥 = 𝑧))) |
8 | 3, 4, 7 | alrimdd 2121 | . . . 4 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥(𝑥 = 𝑦 ↔ 𝑥 = 𝑧))) |
9 | 2, 8 | eximd 2123 | . . 3 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑧 𝑧 = 𝑦 → ∃𝑧∀𝑥(𝑥 = 𝑦 ↔ 𝑥 = 𝑧))) |
10 | 1, 9 | mpi 20 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ∃𝑧∀𝑥(𝑥 = 𝑦 ↔ 𝑥 = 𝑧)) |
11 | df-eu 2502 | . 2 ⊢ (∃!𝑥 𝑥 = 𝑦 ↔ ∃𝑧∀𝑥(𝑥 = 𝑦 ↔ 𝑥 = 𝑧)) | |
12 | 10, 11 | sylibr 224 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ∃!𝑥 𝑥 = 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∀wal 1521 ∃wex 1744 ∃!weu 2498 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-eu 2502 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |