Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-naevhba1v Structured version   Visualization version   GIF version

Theorem wl-naevhba1v 33615
Description: An instance of hbn1w 2122 applied to equality. (Contributed by Wolf Lammen, 7-Apr-2021.)
Assertion
Ref Expression
wl-naevhba1v (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑥 ¬ ∀𝑥 𝑥 = 𝑦)
Distinct variable group:   𝑥,𝑦

Proof of Theorem wl-naevhba1v
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 equequ1 2105 . 2 (𝑥 = 𝑧 → (𝑥 = 𝑦𝑧 = 𝑦))
21hbn1w 2122 1 (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑥 ¬ ∀𝑥 𝑥 = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088
This theorem depends on definitions:  df-bi 197  df-an 385  df-ex 1852
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator