Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-nfs1t Structured version   Visualization version   GIF version

Theorem wl-nfs1t 33304
Description: If 𝑦 is not free in 𝜑, 𝑥 is not free in [𝑦 / 𝑥]𝜑. Closed form of nfs1 2364. (Contributed by Wolf Lammen, 27-Jul-2019.)
Assertion
Ref Expression
wl-nfs1t (Ⅎ𝑦𝜑 → Ⅎ𝑥[𝑦 / 𝑥]𝜑)

Proof of Theorem wl-nfs1t
StepHypRef Expression
1 sbequ12r 2111 . . . . . 6 (𝑦 = 𝑥 → ([𝑦 / 𝑥]𝜑𝜑))
21equcoms 1946 . . . . 5 (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑𝜑))
32sps 2054 . . . 4 (∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑𝜑))
43drnf1 2328 . . 3 (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥[𝑦 / 𝑥]𝜑 ↔ Ⅎ𝑦𝜑))
54biimprd 238 . 2 (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑦𝜑 → Ⅎ𝑥[𝑦 / 𝑥]𝜑))
6 nfsb2 2359 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥[𝑦 / 𝑥]𝜑)
76a1d 25 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑦𝜑 → Ⅎ𝑥[𝑦 / 𝑥]𝜑))
85, 7pm2.61i 176 1 (Ⅎ𝑦𝜑 → Ⅎ𝑥[𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wal 1480  wnf 1707  [wsb 1879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-10 2018  ax-12 2046  ax-13 2245
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1704  df-nf 1709  df-sb 1880
This theorem is referenced by:  wl-sb8t  33313
  Copyright terms: Public domain W3C validator