Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-pm2.24i Structured version   Visualization version   GIF version

Theorem wl-pm2.24i 32917
Description: Inference rule. Copy of pm2.24i 146 with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
wl-pm2.24i.1 𝜑
Assertion
Ref Expression
wl-pm2.24i 𝜑𝜓)

Proof of Theorem wl-pm2.24i
StepHypRef Expression
1 wl-pm2.24i.1 . 2 𝜑
2 ax-luk3 32910 . 2 (𝜑 → (¬ 𝜑𝜓))
31, 2ax-mp 5 1 𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-luk3 32910
This theorem is referenced by:  wl-a1i  32918
  Copyright terms: Public domain W3C validator