Mathbox for Wolf Lammen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-sb6rft Structured version   Visualization version   GIF version

Theorem wl-sb6rft 33301
 Description: A specialization of wl-equsal1t 33298. Closed form of sb6rf 2421. (Contributed by Wolf Lammen, 27-Jul-2019.)
Assertion
Ref Expression
wl-sb6rft (Ⅎ𝑥𝜑 → (𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → [𝑥 / 𝑦]𝜑)))

Proof of Theorem wl-sb6rft
StepHypRef Expression
1 nfnf1 2029 . . 3 𝑥𝑥𝜑
2 id 22 . . 3 (Ⅎ𝑥𝜑 → Ⅎ𝑥𝜑)
3 sbequ12r 2110 . . . 4 (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑𝜑))
43a1i 11 . . 3 (Ⅎ𝑥𝜑 → (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑𝜑)))
51, 2, 4wl-equsald 33296 . 2 (Ⅎ𝑥𝜑 → (∀𝑥(𝑥 = 𝑦 → [𝑥 / 𝑦]𝜑) ↔ 𝜑))
65bicomd 213 1 (Ⅎ𝑥𝜑 → (𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → [𝑥 / 𝑦]𝜑)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196  ∀wal 1479  Ⅎwnf 1706  [wsb 1878 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-10 2017  ax-12 2045  ax-13 2244 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1703  df-nf 1708  df-sb 1879 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator