Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-sb8mot Structured version   Visualization version   GIF version

Theorem wl-sb8mot 32992
Description: Substitution of variable in universal quantifier. Closed form of sb8mo 2503.

This theorem relates to wl-mo3t 32990, since replacing 𝜑 with [𝑦 / 𝑥]𝜑 in the latter yields subexpressions like [𝑥 / 𝑦][𝑦 / 𝑥]𝜑, which can be reduced to 𝜑 via sbft 2378 and sbco 2411. So ∃*𝑥𝜑 ↔ ∃*𝑦[𝑦 / 𝑥]𝜑 is provable from wl-mo3t 32990 in a simple fashion, unfortunately only if 𝑥 and 𝑦 are known to be distinct. To avoid any hassle with distinctors, we prefer to derive this theorem independently, ignoring the close connection between both theorems. From an educational standpoint, one would assume wl-mo3t 32990 to be more fundamental, as it hints how the "at most one" objects on both sides of the biconditional correlate (they are the same), if they exist at all, and then prove this theorem from it. (Contributed by Wolf Lammen, 11-Aug-2019.)

Assertion
Ref Expression
wl-sb8mot (∀𝑥𝑦𝜑 → (∃*𝑥𝜑 ↔ ∃*𝑦[𝑦 / 𝑥]𝜑))

Proof of Theorem wl-sb8mot
StepHypRef Expression
1 wl-sb8et 32966 . . 3 (∀𝑥𝑦𝜑 → (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑))
2 wl-sb8eut 32991 . . 3 (∀𝑥𝑦𝜑 → (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑))
31, 2imbi12d 334 . 2 (∀𝑥𝑦𝜑 → ((∃𝑥𝜑 → ∃!𝑥𝜑) ↔ (∃𝑦[𝑦 / 𝑥]𝜑 → ∃!𝑦[𝑦 / 𝑥]𝜑)))
4 df-mo 2474 . 2 (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑))
5 df-mo 2474 . 2 (∃*𝑦[𝑦 / 𝑥]𝜑 ↔ (∃𝑦[𝑦 / 𝑥]𝜑 → ∃!𝑦[𝑦 / 𝑥]𝜑))
63, 4, 53bitr4g 303 1 (∀𝑥𝑦𝜑 → (∃*𝑥𝜑 ↔ ∃*𝑦[𝑦 / 𝑥]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wal 1478  wex 1701  wnf 1705  [wsb 1877  ∃!weu 2469  ∃*wmo 2470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator