Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-speqv Structured version   Visualization version   GIF version

Theorem wl-speqv 32979
Description: Under the assumption ¬ 𝑥 = 𝑦 a specialized version of sp 2051 is provable from Tarski's FOL and ax13v 2246 only. Note that this reverts the implication in ax13lem1 2247, so in fact 𝑥 = 𝑦 → (∀𝑥𝑧 = 𝑦𝑧 = 𝑦)) holds. (Contributed by Wolf Lammen, 17-Apr-2021.)
Assertion
Ref Expression
wl-speqv 𝑥 = 𝑦 → (∀𝑥 𝑧 = 𝑦𝑧 = 𝑦))
Distinct variable group:   𝑥,𝑧

Proof of Theorem wl-speqv
StepHypRef Expression
1 19.2 1889 . 2 (∀𝑥 𝑧 = 𝑦 → ∃𝑥 𝑧 = 𝑦)
2 ax13lem2 2295 . 2 𝑥 = 𝑦 → (∃𝑥 𝑧 = 𝑦𝑧 = 𝑦))
31, 2syl5 34 1 𝑥 = 𝑦 → (∀𝑥 𝑧 = 𝑦𝑧 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1478  wex 1701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-13 2245
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1702
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator