MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlk1walk Structured version   Visualization version   GIF version

Theorem wlk1walk 26591
Description: A walk is a 1-walk "on the edge level" according to Aksoy et al. (Contributed by AV, 30-Dec-2020.)
Hypothesis
Ref Expression
wlk1walk.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
wlk1walk (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (1..^(#‘𝐹))1 ≤ (#‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘)))))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑃,𝑘
Allowed substitution hint:   𝐼(𝑘)

Proof of Theorem wlk1walk
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 wlkv 26564 . 2 (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
2 eqid 2651 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2651 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
42, 3iswlk 26562 . . 3 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(#‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖))))))
5 fvex 6239 . . . . . . 7 (𝐼‘(𝐹‘(𝑘 − 1))) ∈ V
65inex1 4832 . . . . . 6 ((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘))) ∈ V
7 fzo0ss1 12537 . . . . . . . . . . . 12 (1..^(#‘𝐹)) ⊆ (0..^(#‘𝐹))
87sseli 3632 . . . . . . . . . . 11 (𝑘 ∈ (1..^(#‘𝐹)) → 𝑘 ∈ (0..^(#‘𝐹)))
9 wkslem1 26559 . . . . . . . . . . . 12 (𝑖 = 𝑘 → (if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖))) ↔ if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
109rspcv 3336 . . . . . . . . . . 11 (𝑘 ∈ (0..^(#‘𝐹)) → (∀𝑖 ∈ (0..^(#‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖))) → if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
118, 10syl 17 . . . . . . . . . 10 (𝑘 ∈ (1..^(#‘𝐹)) → (∀𝑖 ∈ (0..^(#‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖))) → if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
1211imp 444 . . . . . . . . 9 ((𝑘 ∈ (1..^(#‘𝐹)) ∧ ∀𝑖 ∈ (0..^(#‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖)))) → if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))
13 elfzofz 12524 . . . . . . . . . . 11 (𝑘 ∈ (1..^(#‘𝐹)) → 𝑘 ∈ (1...(#‘𝐹)))
14 fz1fzo0m1 12555 . . . . . . . . . . 11 (𝑘 ∈ (1...(#‘𝐹)) → (𝑘 − 1) ∈ (0..^(#‘𝐹)))
15 wkslem1 26559 . . . . . . . . . . . 12 (𝑖 = (𝑘 − 1) → (if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖))) ↔ if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))))))
1615rspcv 3336 . . . . . . . . . . 11 ((𝑘 − 1) ∈ (0..^(#‘𝐹)) → (∀𝑖 ∈ (0..^(#‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖))) → if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))))))
1713, 14, 163syl 18 . . . . . . . . . 10 (𝑘 ∈ (1..^(#‘𝐹)) → (∀𝑖 ∈ (0..^(#‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖))) → if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))))))
1817imp 444 . . . . . . . . 9 ((𝑘 ∈ (1..^(#‘𝐹)) ∧ ∀𝑖 ∈ (0..^(#‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖)))) → if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))))
19 df-ifp 1033 . . . . . . . . . . . 12 (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ (((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
20 elfzoelz 12509 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1..^(#‘𝐹)) → 𝑘 ∈ ℤ)
21 zcn 11420 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
22 eqidd 2652 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℂ → (𝑘 − 1) = (𝑘 − 1))
23 npcan1 10493 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℂ → ((𝑘 − 1) + 1) = 𝑘)
24 wkslem2 26560 . . . . . . . . . . . . . . . 16 (((𝑘 − 1) = (𝑘 − 1) ∧ ((𝑘 − 1) + 1) = 𝑘) → (if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ↔ if-((𝑃‘(𝑘 − 1)) = (𝑃𝑘), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))))))
2522, 23, 24syl2anc 694 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℂ → (if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ↔ if-((𝑃‘(𝑘 − 1)) = (𝑃𝑘), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))))))
2620, 21, 253syl 18 . . . . . . . . . . . . . 14 (𝑘 ∈ (1..^(#‘𝐹)) → (if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ↔ if-((𝑃‘(𝑘 − 1)) = (𝑃𝑘), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))))))
27 df-ifp 1033 . . . . . . . . . . . . . . 15 (if-((𝑃‘(𝑘 − 1)) = (𝑃𝑘), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ↔ (((𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}) ∨ (¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))))))
28 sneq 4220 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃‘(𝑘 − 1)) = (𝑃𝑘) → {(𝑃‘(𝑘 − 1))} = {(𝑃𝑘)})
2928eqeq2d 2661 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃‘(𝑘 − 1)) = (𝑃𝑘) → (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))} ↔ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃𝑘)}))
30 fvex 6239 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃𝑘) ∈ V
3130snid 4241 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃𝑘) ∈ {(𝑃𝑘)}
32 wlk1walk.i . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝐼 = (iEdg‘𝐺)
3332fveq1i 6230 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐼‘(𝐹‘(𝑘 − 1))) = ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))
3433eleq2i 2722 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ↔ (𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))))
35 eleq2 2719 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃𝑘)} → ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ↔ (𝑃𝑘) ∈ {(𝑃𝑘)}))
3634, 35syl5bb 272 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃𝑘)} → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ↔ (𝑃𝑘) ∈ {(𝑃𝑘)}))
3731, 36mpbiri 248 . . . . . . . . . . . . . . . . . . . . . . . 24 (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃𝑘)} → (𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))))
38 eleq2 2719 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)) ↔ (𝑃𝑘) ∈ {(𝑃𝑘)}))
3931, 38mpbiri 248 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → (𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)))
4032fveq1i 6230 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐼‘(𝐹𝑘)) = ((iEdg‘𝐺)‘(𝐹𝑘))
4139, 40syl6eleqr 2741 . . . . . . . . . . . . . . . . . . . . . . . 24 (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))
4237, 41anim12i 589 . . . . . . . . . . . . . . . . . . . . . . 23 ((((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃𝑘)} ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
4342ex 449 . . . . . . . . . . . . . . . . . . . . . 22 (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃𝑘)} → (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
4429, 43syl6bi 243 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃‘(𝑘 − 1)) = (𝑃𝑘) → (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))} → (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))))
4544imp 444 . . . . . . . . . . . . . . . . . . . 20 (((𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}) → (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
4645com12 32 . . . . . . . . . . . . . . . . . . 19 (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → (((𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
4746adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) → (((𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
48 fvex 6239 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃‘(𝑘 + 1)) ∈ V
4930, 48prss 4383 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)) ∧ (𝑃‘(𝑘 + 1)) ∈ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))
5032eqcomi 2660 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (iEdg‘𝐺) = 𝐼
5150fveq1i 6230 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((iEdg‘𝐺)‘(𝐹𝑘)) = (𝐼‘(𝐹𝑘))
5251eleq2i 2722 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)) ↔ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))
5352biimpi 206 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)) → (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))
5453adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)) ∧ (𝑃‘(𝑘 + 1)) ∈ ((iEdg‘𝐺)‘(𝐹𝑘))) → (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))
5549, 54sylbir 225 . . . . . . . . . . . . . . . . . . . . . . . 24 ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)) → (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))
5637, 55anim12i 589 . . . . . . . . . . . . . . . . . . . . . . 23 ((((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃𝑘)} ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
5756ex 449 . . . . . . . . . . . . . . . . . . . . . 22 (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃𝑘)} → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
5829, 57syl6bi 243 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃‘(𝑘 − 1)) = (𝑃𝑘) → (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))} → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))))
5958imp 444 . . . . . . . . . . . . . . . . . . . 20 (((𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}) → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
6059com12 32 . . . . . . . . . . . . . . . . . . 19 ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)) → (((𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
6160adantl 481 . . . . . . . . . . . . . . . . . 18 ((¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → (((𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
6247, 61jaoi 393 . . . . . . . . . . . . . . . . 17 ((((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → (((𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
6362com12 32 . . . . . . . . . . . . . . . 16 (((𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}) → ((((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
64 fvex 6239 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃‘(𝑘 − 1)) ∈ V
6564, 30prss 4383 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑃‘(𝑘 − 1)) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ↔ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))))
6650fveq1i 6230 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = (𝐼‘(𝐹‘(𝑘 − 1)))
6766eleq2i 2722 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ↔ (𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))))
6867biimpi 206 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) → (𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))))
6940eleq2i 2722 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)) ↔ (𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)))
7069, 38syl5bb 272 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → ((𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)) ↔ (𝑃𝑘) ∈ {(𝑃𝑘)}))
7131, 70mpbiri 248 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))
7268, 71anim12i 589 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
7372ex 449 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) → (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
7473adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑃‘(𝑘 − 1)) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
7565, 74sylbir 225 . . . . . . . . . . . . . . . . . . . . 21 ({(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) → (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
7675adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
7776com12 32 . . . . . . . . . . . . . . . . . . 19 (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → ((¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
7877adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) → ((¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
7967, 52anbi12i 733 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
8079biimpi 206 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
8180ex 449 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) → ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
8281adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑃‘(𝑘 − 1)) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
8365, 82sylbir 225 . . . . . . . . . . . . . . . . . . . . . . 23 ({(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) → ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
8483adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
8584com12 32 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)) → ((¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
8685adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)) ∧ (𝑃‘(𝑘 + 1)) ∈ ((iEdg‘𝐺)‘(𝐹𝑘))) → ((¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
8749, 86sylbir 225 . . . . . . . . . . . . . . . . . . 19 ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)) → ((¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
8887adantl 481 . . . . . . . . . . . . . . . . . 18 ((¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ((¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
8978, 88jaoi 393 . . . . . . . . . . . . . . . . 17 ((((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
9089com12 32 . . . . . . . . . . . . . . . 16 ((¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
9163, 90jaoi 393 . . . . . . . . . . . . . . 15 ((((𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}) ∨ (¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))))) → ((((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
9227, 91sylbi 207 . . . . . . . . . . . . . 14 (if-((𝑃‘(𝑘 − 1)) = (𝑃𝑘), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
9326, 92syl6bi 243 . . . . . . . . . . . . 13 (𝑘 ∈ (1..^(#‘𝐹)) → (if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))))
9493com3r 87 . . . . . . . . . . . 12 ((((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → (𝑘 ∈ (1..^(#‘𝐹)) → (if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))))
9519, 94sylbi 207 . . . . . . . . . . 11 (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → (𝑘 ∈ (1..^(#‘𝐹)) → (if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))))
9695com12 32 . . . . . . . . . 10 (𝑘 ∈ (1..^(#‘𝐹)) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → (if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))))
9796adantr 480 . . . . . . . . 9 ((𝑘 ∈ (1..^(#‘𝐹)) ∧ ∀𝑖 ∈ (0..^(#‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖)))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → (if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))))
9812, 18, 97mp2d 49 . . . . . . . 8 ((𝑘 ∈ (1..^(#‘𝐹)) ∧ ∀𝑖 ∈ (0..^(#‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
9998ancoms 468 . . . . . . 7 ((∀𝑖 ∈ (0..^(#‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖))) ∧ 𝑘 ∈ (1..^(#‘𝐹))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
100 inelcm 4065 . . . . . . 7 (((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))) → ((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘))) ≠ ∅)
10199, 100syl 17 . . . . . 6 ((∀𝑖 ∈ (0..^(#‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖))) ∧ 𝑘 ∈ (1..^(#‘𝐹))) → ((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘))) ≠ ∅)
102 hashge1 13216 . . . . . 6 ((((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘))) ∈ V ∧ ((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘))) ≠ ∅) → 1 ≤ (#‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘)))))
1036, 101, 102sylancr 696 . . . . 5 ((∀𝑖 ∈ (0..^(#‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖))) ∧ 𝑘 ∈ (1..^(#‘𝐹))) → 1 ≤ (#‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘)))))
104103ralrimiva 2995 . . . 4 (∀𝑖 ∈ (0..^(#‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖))) → ∀𝑘 ∈ (1..^(#‘𝐹))1 ≤ (#‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘)))))
1051043ad2ant3 1104 . . 3 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(#‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖)))) → ∀𝑘 ∈ (1..^(#‘𝐹))1 ≤ (#‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘)))))
1064, 105syl6bi 243 . 2 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (1..^(#‘𝐹))1 ≤ (#‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘))))))
1071, 106mpcom 38 1 (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (1..^(#‘𝐹))1 ≤ (#‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  if-wif 1032  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wral 2941  Vcvv 3231  cin 3606  wss 3607  c0 3948  {csn 4210  {cpr 4212   class class class wbr 4685  dom cdm 5143  wf 5922  cfv 5926  (class class class)co 6690  cc 9972  0cc0 9974  1c1 9975   + caddc 9977  cle 10113  cmin 10304  cz 11415  ...cfz 12364  ..^cfzo 12504  #chash 13157  Word cword 13323  Vtxcvtx 25919  iEdgciedg 25920  Walkscwlks 26548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ifp 1033  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-hash 13158  df-word 13331  df-wlks 26551
This theorem is referenced by:  wlk1ewlk  26592
  Copyright terms: Public domain W3C validator