MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlk1walk Structured version   Visualization version   GIF version

Theorem wlk1walk 27414
Description: A walk is a 1-walk "on the edge level" according to Aksoy et al. (Contributed by AV, 30-Dec-2020.)
Hypothesis
Ref Expression
wlk1walk.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
wlk1walk (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (1..^(♯‘𝐹))1 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘)))))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑃,𝑘
Allowed substitution hint:   𝐼(𝑘)

Proof of Theorem wlk1walk
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 wlkv 27388 . 2 (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
2 eqid 2821 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2821 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
42, 3iswlk 27386 . . 3 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖))))))
5 fvex 6677 . . . . . . 7 (𝐼‘(𝐹‘(𝑘 − 1))) ∈ V
65inex1 5213 . . . . . 6 ((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘))) ∈ V
7 fzo0ss1 13061 . . . . . . . . . . . 12 (1..^(♯‘𝐹)) ⊆ (0..^(♯‘𝐹))
87sseli 3962 . . . . . . . . . . 11 (𝑘 ∈ (1..^(♯‘𝐹)) → 𝑘 ∈ (0..^(♯‘𝐹)))
9 wkslem1 27383 . . . . . . . . . . . 12 (𝑖 = 𝑘 → (if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖))) ↔ if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
109rspcv 3617 . . . . . . . . . . 11 (𝑘 ∈ (0..^(♯‘𝐹)) → (∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖))) → if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
118, 10syl 17 . . . . . . . . . 10 (𝑘 ∈ (1..^(♯‘𝐹)) → (∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖))) → if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
1211imp 409 . . . . . . . . 9 ((𝑘 ∈ (1..^(♯‘𝐹)) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖)))) → if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))
13 elfzofz 13047 . . . . . . . . . . 11 (𝑘 ∈ (1..^(♯‘𝐹)) → 𝑘 ∈ (1...(♯‘𝐹)))
14 fz1fzo0m1 13079 . . . . . . . . . . 11 (𝑘 ∈ (1...(♯‘𝐹)) → (𝑘 − 1) ∈ (0..^(♯‘𝐹)))
15 wkslem1 27383 . . . . . . . . . . . 12 (𝑖 = (𝑘 − 1) → (if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖))) ↔ if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))))))
1615rspcv 3617 . . . . . . . . . . 11 ((𝑘 − 1) ∈ (0..^(♯‘𝐹)) → (∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖))) → if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))))))
1713, 14, 163syl 18 . . . . . . . . . 10 (𝑘 ∈ (1..^(♯‘𝐹)) → (∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖))) → if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))))))
1817imp 409 . . . . . . . . 9 ((𝑘 ∈ (1..^(♯‘𝐹)) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖)))) → if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))))
19 df-ifp 1058 . . . . . . . . . . . 12 (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ (((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
20 elfzoelz 13032 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1..^(♯‘𝐹)) → 𝑘 ∈ ℤ)
21 zcn 11980 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
22 eqidd 2822 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℂ → (𝑘 − 1) = (𝑘 − 1))
23 npcan1 11059 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℂ → ((𝑘 − 1) + 1) = 𝑘)
24 wkslem2 27384 . . . . . . . . . . . . . . . 16 (((𝑘 − 1) = (𝑘 − 1) ∧ ((𝑘 − 1) + 1) = 𝑘) → (if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ↔ if-((𝑃‘(𝑘 − 1)) = (𝑃𝑘), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))))))
2522, 23, 24syl2anc 586 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℂ → (if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ↔ if-((𝑃‘(𝑘 − 1)) = (𝑃𝑘), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))))))
2620, 21, 253syl 18 . . . . . . . . . . . . . 14 (𝑘 ∈ (1..^(♯‘𝐹)) → (if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ↔ if-((𝑃‘(𝑘 − 1)) = (𝑃𝑘), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))))))
27 df-ifp 1058 . . . . . . . . . . . . . . 15 (if-((𝑃‘(𝑘 − 1)) = (𝑃𝑘), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ↔ (((𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}) ∨ (¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))))))
28 sneq 4570 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃‘(𝑘 − 1)) = (𝑃𝑘) → {(𝑃‘(𝑘 − 1))} = {(𝑃𝑘)})
2928eqeq2d 2832 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃‘(𝑘 − 1)) = (𝑃𝑘) → (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))} ↔ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃𝑘)}))
30 fvex 6677 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃𝑘) ∈ V
3130snid 4594 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃𝑘) ∈ {(𝑃𝑘)}
32 wlk1walk.i . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝐼 = (iEdg‘𝐺)
3332fveq1i 6665 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐼‘(𝐹‘(𝑘 − 1))) = ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))
3433eleq2i 2904 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ↔ (𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))))
35 eleq2 2901 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃𝑘)} → ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ↔ (𝑃𝑘) ∈ {(𝑃𝑘)}))
3634, 35syl5bb 285 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃𝑘)} → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ↔ (𝑃𝑘) ∈ {(𝑃𝑘)}))
3731, 36mpbiri 260 . . . . . . . . . . . . . . . . . . . . . . . 24 (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃𝑘)} → (𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))))
38 eleq2 2901 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)) ↔ (𝑃𝑘) ∈ {(𝑃𝑘)}))
3931, 38mpbiri 260 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → (𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)))
4032fveq1i 6665 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐼‘(𝐹𝑘)) = ((iEdg‘𝐺)‘(𝐹𝑘))
4139, 40eleqtrrdi 2924 . . . . . . . . . . . . . . . . . . . . . . . 24 (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))
4237, 41anim12i 614 . . . . . . . . . . . . . . . . . . . . . . 23 ((((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃𝑘)} ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
4342ex 415 . . . . . . . . . . . . . . . . . . . . . 22 (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃𝑘)} → (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
4429, 43syl6bi 255 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃‘(𝑘 − 1)) = (𝑃𝑘) → (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))} → (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))))
4544imp 409 . . . . . . . . . . . . . . . . . . . 20 (((𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}) → (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
4645com12 32 . . . . . . . . . . . . . . . . . . 19 (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → (((𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
4746adantl 484 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) → (((𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
48 fvex 6677 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃‘(𝑘 + 1)) ∈ V
4930, 48prss 4746 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)) ∧ (𝑃‘(𝑘 + 1)) ∈ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))
5032eqcomi 2830 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (iEdg‘𝐺) = 𝐼
5150fveq1i 6665 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((iEdg‘𝐺)‘(𝐹𝑘)) = (𝐼‘(𝐹𝑘))
5251eleq2i 2904 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)) ↔ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))
5352biimpi 218 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)) → (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))
5453adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)) ∧ (𝑃‘(𝑘 + 1)) ∈ ((iEdg‘𝐺)‘(𝐹𝑘))) → (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))
5549, 54sylbir 237 . . . . . . . . . . . . . . . . . . . . . . . 24 ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)) → (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))
5637, 55anim12i 614 . . . . . . . . . . . . . . . . . . . . . . 23 ((((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃𝑘)} ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
5756ex 415 . . . . . . . . . . . . . . . . . . . . . 22 (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃𝑘)} → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
5829, 57syl6bi 255 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃‘(𝑘 − 1)) = (𝑃𝑘) → (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))} → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))))
5958imp 409 . . . . . . . . . . . . . . . . . . . 20 (((𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}) → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
6059com12 32 . . . . . . . . . . . . . . . . . . 19 ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)) → (((𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
6160adantl 484 . . . . . . . . . . . . . . . . . 18 ((¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → (((𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
6247, 61jaoi 853 . . . . . . . . . . . . . . . . 17 ((((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → (((𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
6362com12 32 . . . . . . . . . . . . . . . 16 (((𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}) → ((((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
64 fvex 6677 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃‘(𝑘 − 1)) ∈ V
6564, 30prss 4746 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑃‘(𝑘 − 1)) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ↔ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))))
6650fveq1i 6665 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = (𝐼‘(𝐹‘(𝑘 − 1)))
6766eleq2i 2904 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ↔ (𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))))
6867biimpi 218 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) → (𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))))
6940eleq2i 2904 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)) ↔ (𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)))
7069, 38syl5bb 285 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → ((𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)) ↔ (𝑃𝑘) ∈ {(𝑃𝑘)}))
7131, 70mpbiri 260 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))
7268, 71anim12i 614 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
7372ex 415 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) → (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
7473adantl 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑃‘(𝑘 − 1)) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
7565, 74sylbir 237 . . . . . . . . . . . . . . . . . . . . 21 ({(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) → (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
7675adantl 484 . . . . . . . . . . . . . . . . . . . 20 ((¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
7776com12 32 . . . . . . . . . . . . . . . . . . 19 (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → ((¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
7877adantl 484 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) → ((¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
7967, 52anbi12i 628 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
8079biimpi 218 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
8180ex 415 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) → ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
8281adantl 484 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑃‘(𝑘 − 1)) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
8365, 82sylbir 237 . . . . . . . . . . . . . . . . . . . . . . 23 ({(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) → ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
8483adantl 484 . . . . . . . . . . . . . . . . . . . . . 22 ((¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
8584com12 32 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)) → ((¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
8685adantr 483 . . . . . . . . . . . . . . . . . . . 20 (((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)) ∧ (𝑃‘(𝑘 + 1)) ∈ ((iEdg‘𝐺)‘(𝐹𝑘))) → ((¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
8749, 86sylbir 237 . . . . . . . . . . . . . . . . . . 19 ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)) → ((¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
8887adantl 484 . . . . . . . . . . . . . . . . . 18 ((¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ((¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
8978, 88jaoi 853 . . . . . . . . . . . . . . . . 17 ((((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
9089com12 32 . . . . . . . . . . . . . . . 16 ((¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
9163, 90jaoi 853 . . . . . . . . . . . . . . 15 ((((𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}) ∨ (¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))))) → ((((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
9227, 91sylbi 219 . . . . . . . . . . . . . 14 (if-((𝑃‘(𝑘 − 1)) = (𝑃𝑘), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
9326, 92syl6bi 255 . . . . . . . . . . . . 13 (𝑘 ∈ (1..^(♯‘𝐹)) → (if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))))
9493com3r 87 . . . . . . . . . . . 12 ((((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → (𝑘 ∈ (1..^(♯‘𝐹)) → (if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))))
9519, 94sylbi 219 . . . . . . . . . . 11 (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → (𝑘 ∈ (1..^(♯‘𝐹)) → (if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))))
9695com12 32 . . . . . . . . . 10 (𝑘 ∈ (1..^(♯‘𝐹)) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → (if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))))
9796adantr 483 . . . . . . . . 9 ((𝑘 ∈ (1..^(♯‘𝐹)) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖)))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → (if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))))
9812, 18, 97mp2d 49 . . . . . . . 8 ((𝑘 ∈ (1..^(♯‘𝐹)) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
9998ancoms 461 . . . . . . 7 ((∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖))) ∧ 𝑘 ∈ (1..^(♯‘𝐹))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
100 inelcm 4413 . . . . . . 7 (((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))) → ((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘))) ≠ ∅)
10199, 100syl 17 . . . . . 6 ((∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖))) ∧ 𝑘 ∈ (1..^(♯‘𝐹))) → ((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘))) ≠ ∅)
102 hashge1 13744 . . . . . 6 ((((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘))) ∈ V ∧ ((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘))) ≠ ∅) → 1 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘)))))
1036, 101, 102sylancr 589 . . . . 5 ((∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖))) ∧ 𝑘 ∈ (1..^(♯‘𝐹))) → 1 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘)))))
104103ralrimiva 3182 . . . 4 (∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖))) → ∀𝑘 ∈ (1..^(♯‘𝐹))1 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘)))))
1051043ad2ant3 1131 . . 3 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖)))) → ∀𝑘 ∈ (1..^(♯‘𝐹))1 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘)))))
1064, 105syl6bi 255 . 2 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (1..^(♯‘𝐹))1 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘))))))
1071, 106mpcom 38 1 (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (1..^(♯‘𝐹))1 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  if-wif 1057  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wral 3138  Vcvv 3494  cin 3934  wss 3935  c0 4290  {csn 4560  {cpr 4562   class class class wbr 5058  dom cdm 5549  wf 6345  cfv 6349  (class class class)co 7150  cc 10529  0cc0 10531  1c1 10532   + caddc 10534  cle 10670  cmin 10864  cz 11975  ...cfz 12886  ..^cfzo 13027  chash 13684  Word cword 13855  Vtxcvtx 26775  iEdgciedg 26776  Walkscwlks 27372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1058  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-fzo 13028  df-hash 13685  df-word 13856  df-wlks 27375
This theorem is referenced by:  wlk1ewlk  27415
  Copyright terms: Public domain W3C validator