Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkcomp Structured version   Visualization version   GIF version

Theorem wlkcomp 26582
 Description: A walk expressed by properties of its components. (Contributed by Alexander van der Vekens, 23-Jun-2018.) (Revised by AV, 1-Jan-2021.)
Hypotheses
Ref Expression
wlkcomp.v 𝑉 = (Vtx‘𝐺)
wlkcomp.i 𝐼 = (iEdg‘𝐺)
wlkcomp.1 𝐹 = (1st𝑊)
wlkcomp.2 𝑃 = (2nd𝑊)
Assertion
Ref Expression
wlkcomp ((𝐺𝑈𝑊 ∈ (𝑆 × 𝑇)) → (𝑊 ∈ (Walks‘𝐺) ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑃,𝑘
Allowed substitution hints:   𝑆(𝑘)   𝑇(𝑘)   𝑈(𝑘)   𝐼(𝑘)   𝑉(𝑘)   𝑊(𝑘)

Proof of Theorem wlkcomp
StepHypRef Expression
1 wlkcomp.1 . . . . . . 7 𝐹 = (1st𝑊)
21eqcomi 2660 . . . . . 6 (1st𝑊) = 𝐹
3 wlkcomp.2 . . . . . . 7 𝑃 = (2nd𝑊)
43eqcomi 2660 . . . . . 6 (2nd𝑊) = 𝑃
52, 4pm3.2i 470 . . . . 5 ((1st𝑊) = 𝐹 ∧ (2nd𝑊) = 𝑃)
6 eqop 7252 . . . . 5 (𝑊 ∈ (𝑆 × 𝑇) → (𝑊 = ⟨𝐹, 𝑃⟩ ↔ ((1st𝑊) = 𝐹 ∧ (2nd𝑊) = 𝑃)))
75, 6mpbiri 248 . . . 4 (𝑊 ∈ (𝑆 × 𝑇) → 𝑊 = ⟨𝐹, 𝑃⟩)
87eleq1d 2715 . . 3 (𝑊 ∈ (𝑆 × 𝑇) → (𝑊 ∈ (Walks‘𝐺) ↔ ⟨𝐹, 𝑃⟩ ∈ (Walks‘𝐺)))
9 df-br 4686 . . 3 (𝐹(Walks‘𝐺)𝑃 ↔ ⟨𝐹, 𝑃⟩ ∈ (Walks‘𝐺))
108, 9syl6bbr 278 . 2 (𝑊 ∈ (𝑆 × 𝑇) → (𝑊 ∈ (Walks‘𝐺) ↔ 𝐹(Walks‘𝐺)𝑃))
11 wlkcomp.v . . 3 𝑉 = (Vtx‘𝐺)
12 wlkcomp.i . . 3 𝐼 = (iEdg‘𝐺)
1311, 12iswlkg 26565 . 2 (𝐺𝑈 → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
1410, 13sylan9bbr 737 1 ((𝐺𝑈𝑊 ∈ (𝑆 × 𝑇)) → (𝑊 ∈ (Walks‘𝐺) ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383  if-wif 1032   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030  ∀wral 2941   ⊆ wss 3607  {csn 4210  {cpr 4212  ⟨cop 4216   class class class wbr 4685   × cxp 5141  dom cdm 5143  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690  1st c1st 7208  2nd c2nd 7209  0cc0 9974  1c1 9975   + caddc 9977  ...cfz 12364  ..^cfzo 12504  #chash 13157  Word cword 13323  Vtxcvtx 25919  iEdgciedg 25920  Walkscwlks 26548 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ifp 1033  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-hash 13158  df-word 13331  df-wlks 26551 This theorem is referenced by:  wlkcompim  26583
 Copyright terms: Public domain W3C validator