MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkcompim Structured version   Visualization version   GIF version

Theorem wlkcompim 27412
Description: Implications for the properties of the components of a walk. (Contributed by Alexander van der Vekens, 23-Jun-2018.) (Revised by AV, 2-Jan-2021.)
Hypotheses
Ref Expression
wlkcomp.v 𝑉 = (Vtx‘𝐺)
wlkcomp.i 𝐼 = (iEdg‘𝐺)
wlkcomp.1 𝐹 = (1st𝑊)
wlkcomp.2 𝑃 = (2nd𝑊)
Assertion
Ref Expression
wlkcompim (𝑊 ∈ (Walks‘𝐺) → (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑃,𝑘
Allowed substitution hints:   𝐼(𝑘)   𝑉(𝑘)   𝑊(𝑘)

Proof of Theorem wlkcompim
StepHypRef Expression
1 elfvex 6702 . 2 (𝑊 ∈ (Walks‘𝐺) → 𝐺 ∈ V)
2 wlkcpr 27409 . . 3 (𝑊 ∈ (Walks‘𝐺) ↔ (1st𝑊)(Walks‘𝐺)(2nd𝑊))
3 wlkvv 27407 . . 3 ((1st𝑊)(Walks‘𝐺)(2nd𝑊) → 𝑊 ∈ (V × V))
42, 3sylbi 219 . 2 (𝑊 ∈ (Walks‘𝐺) → 𝑊 ∈ (V × V))
5 wlkcomp.v . . . 4 𝑉 = (Vtx‘𝐺)
6 wlkcomp.i . . . 4 𝐼 = (iEdg‘𝐺)
7 wlkcomp.1 . . . 4 𝐹 = (1st𝑊)
8 wlkcomp.2 . . . 4 𝑃 = (2nd𝑊)
95, 6, 7, 8wlkcomp 27411 . . 3 ((𝐺 ∈ V ∧ 𝑊 ∈ (V × V)) → (𝑊 ∈ (Walks‘𝐺) ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
109biimpcd 251 . 2 (𝑊 ∈ (Walks‘𝐺) → ((𝐺 ∈ V ∧ 𝑊 ∈ (V × V)) → (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
111, 4, 10mp2and 697 1 (𝑊 ∈ (Walks‘𝐺) → (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  if-wif 1057  w3a 1083   = wceq 1533  wcel 2110  wral 3138  Vcvv 3494  wss 3935  {csn 4566  {cpr 4568   class class class wbr 5065   × cxp 5552  dom cdm 5554  wf 6350  cfv 6354  (class class class)co 7155  1st c1st 7686  2nd c2nd 7687  0cc0 10536  1c1 10537   + caddc 10539  ...cfz 12891  ..^cfzo 13032  chash 13689  Word cword 13860  Vtxcvtx 26780  iEdgciedg 26781  Walkscwlks 27377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1058  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-map 8407  df-pm 8408  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-n0 11897  df-z 11981  df-uz 12243  df-fz 12892  df-fzo 13033  df-hash 13690  df-word 13861  df-wlks 27380
This theorem is referenced by:  wlkelwrd  27413
  Copyright terms: Public domain W3C validator