MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkdlem2 Structured version   Visualization version   GIF version

Theorem wlkdlem2 27467
Description: Lemma 2 for wlkd 27470. (Contributed by AV, 7-Feb-2021.)
Hypotheses
Ref Expression
wlkd.p (𝜑𝑃 ∈ Word V)
wlkd.f (𝜑𝐹 ∈ Word V)
wlkd.l (𝜑 → (♯‘𝑃) = ((♯‘𝐹) + 1))
wlkd.e (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))
Assertion
Ref Expression
wlkdlem2 (𝜑 → (((♯‘𝐹) ∈ ℕ → (𝑃‘(♯‘𝐹)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
Distinct variable groups:   𝑘,𝐹   𝑃,𝑘   𝑘,𝐼   𝜑,𝑘

Proof of Theorem wlkdlem2
StepHypRef Expression
1 wlkd.e . . 3 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))
2 fzo0end 13132 . . . . 5 ((♯‘𝐹) ∈ ℕ → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)))
3 fveq2 6672 . . . . . . . 8 (𝑘 = ((♯‘𝐹) − 1) → (𝑃𝑘) = (𝑃‘((♯‘𝐹) − 1)))
4 fvoveq1 7181 . . . . . . . 8 (𝑘 = ((♯‘𝐹) − 1) → (𝑃‘(𝑘 + 1)) = (𝑃‘(((♯‘𝐹) − 1) + 1)))
53, 4preq12d 4679 . . . . . . 7 (𝑘 = ((♯‘𝐹) − 1) → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘(((♯‘𝐹) − 1) + 1))})
6 2fveq3 6677 . . . . . . 7 (𝑘 = ((♯‘𝐹) − 1) → (𝐼‘(𝐹𝑘)) = (𝐼‘(𝐹‘((♯‘𝐹) − 1))))
75, 6sseq12d 4002 . . . . . 6 (𝑘 = ((♯‘𝐹) − 1) → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) ↔ {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘(((♯‘𝐹) − 1) + 1))} ⊆ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))))
87rspcv 3620 . . . . 5 (((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)) → (∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) → {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘(((♯‘𝐹) − 1) + 1))} ⊆ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))))
92, 8syl 17 . . . 4 ((♯‘𝐹) ∈ ℕ → (∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) → {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘(((♯‘𝐹) − 1) + 1))} ⊆ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))))
10 fvex 6685 . . . . . 6 (𝑃‘((♯‘𝐹) − 1)) ∈ V
11 fvex 6685 . . . . . 6 (𝑃‘(((♯‘𝐹) − 1) + 1)) ∈ V
1210, 11prss 4755 . . . . 5 (((𝑃‘((♯‘𝐹) − 1)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1))) ∧ (𝑃‘(((♯‘𝐹) − 1) + 1)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))) ↔ {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘(((♯‘𝐹) − 1) + 1))} ⊆ (𝐼‘(𝐹‘((♯‘𝐹) − 1))))
13 nncn 11648 . . . . . . . . . 10 ((♯‘𝐹) ∈ ℕ → (♯‘𝐹) ∈ ℂ)
14 npcan1 11067 . . . . . . . . . 10 ((♯‘𝐹) ∈ ℂ → (((♯‘𝐹) − 1) + 1) = (♯‘𝐹))
1513, 14syl 17 . . . . . . . . 9 ((♯‘𝐹) ∈ ℕ → (((♯‘𝐹) − 1) + 1) = (♯‘𝐹))
1615fveq2d 6676 . . . . . . . 8 ((♯‘𝐹) ∈ ℕ → (𝑃‘(((♯‘𝐹) − 1) + 1)) = (𝑃‘(♯‘𝐹)))
1716eleq1d 2899 . . . . . . 7 ((♯‘𝐹) ∈ ℕ → ((𝑃‘(((♯‘𝐹) − 1) + 1)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1))) ↔ (𝑃‘(♯‘𝐹)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))))
1817biimpd 231 . . . . . 6 ((♯‘𝐹) ∈ ℕ → ((𝑃‘(((♯‘𝐹) − 1) + 1)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1))) → (𝑃‘(♯‘𝐹)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))))
1918adantld 493 . . . . 5 ((♯‘𝐹) ∈ ℕ → (((𝑃‘((♯‘𝐹) − 1)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1))) ∧ (𝑃‘(((♯‘𝐹) − 1) + 1)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))) → (𝑃‘(♯‘𝐹)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))))
2012, 19syl5bir 245 . . . 4 ((♯‘𝐹) ∈ ℕ → ({(𝑃‘((♯‘𝐹) − 1)), (𝑃‘(((♯‘𝐹) − 1) + 1))} ⊆ (𝐼‘(𝐹‘((♯‘𝐹) − 1))) → (𝑃‘(♯‘𝐹)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))))
219, 20syld 47 . . 3 ((♯‘𝐹) ∈ ℕ → (∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) → (𝑃‘(♯‘𝐹)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))))
221, 21syl5com 31 . 2 (𝜑 → ((♯‘𝐹) ∈ ℕ → (𝑃‘(♯‘𝐹)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))))
23 fvex 6685 . . . . . . 7 (𝑃𝑘) ∈ V
24 fvex 6685 . . . . . . 7 (𝑃‘(𝑘 + 1)) ∈ V
2523, 24prss 4755 . . . . . 6 (((𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)) ∧ (𝑃‘(𝑘 + 1)) ∈ (𝐼‘(𝐹𝑘))) ↔ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))
26 simpl 485 . . . . . 6 (((𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)) ∧ (𝑃‘(𝑘 + 1)) ∈ (𝐼‘(𝐹𝑘))) → (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))
2725, 26sylbir 237 . . . . 5 ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) → (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))
2827a1i 11 . . . 4 ((𝜑𝑘 ∈ (0..^(♯‘𝐹))) → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) → (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
2928ralimdva 3179 . . 3 (𝜑 → (∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
301, 29mpd 15 . 2 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))
3122, 30jca 514 1 (𝜑 → (((♯‘𝐹) ∈ ℕ → (𝑃‘(♯‘𝐹)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3140  Vcvv 3496  wss 3938  {cpr 4571  cfv 6357  (class class class)co 7158  cc 10537  0cc0 10539  1c1 10540   + caddc 10542  cmin 10872  cn 11640  ..^cfzo 13036  chash 13693  Word cword 13864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037
This theorem is referenced by:  wlkdlem3  27468
  Copyright terms: Public domain W3C validator