MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkiswwlks2lem2 Structured version   Visualization version   GIF version

Theorem wlkiswwlks2lem2 27575
Description: Lemma 2 for wlkiswwlks2 27580. (Contributed by Alexander van der Vekens, 20-Jul-2018.)
Hypothesis
Ref Expression
wlkiswwlks2lem.f 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))
Assertion
Ref Expression
wlkiswwlks2lem2 (((♯‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((♯‘𝑃) − 1))) → (𝐹𝐼) = (𝐸‘{(𝑃𝐼), (𝑃‘(𝐼 + 1))}))
Distinct variable groups:   𝑥,𝑃   𝑥,𝐸   𝑥,𝐼
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem wlkiswwlks2lem2
StepHypRef Expression
1 wlkiswwlks2lem.f . 2 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))
2 fveq2 6663 . . . 4 (𝑥 = 𝐼 → (𝑃𝑥) = (𝑃𝐼))
3 fvoveq1 7168 . . . 4 (𝑥 = 𝐼 → (𝑃‘(𝑥 + 1)) = (𝑃‘(𝐼 + 1)))
42, 3preq12d 4669 . . 3 (𝑥 = 𝐼 → {(𝑃𝑥), (𝑃‘(𝑥 + 1))} = {(𝑃𝐼), (𝑃‘(𝐼 + 1))})
54fveq2d 6667 . 2 (𝑥 = 𝐼 → (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}) = (𝐸‘{(𝑃𝐼), (𝑃‘(𝐼 + 1))}))
6 simpr 485 . 2 (((♯‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((♯‘𝑃) − 1))) → 𝐼 ∈ (0..^((♯‘𝑃) − 1)))
7 fvexd 6678 . 2 (((♯‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((♯‘𝑃) − 1))) → (𝐸‘{(𝑃𝐼), (𝑃‘(𝐼 + 1))}) ∈ V)
81, 5, 6, 7fvmptd3 6783 1 (((♯‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((♯‘𝑃) − 1))) → (𝐹𝐼) = (𝐸‘{(𝑃𝐼), (𝑃‘(𝐼 + 1))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  Vcvv 3492  {cpr 4559  cmpt 5137  ccnv 5547  cfv 6348  (class class class)co 7145  0cc0 10525  1c1 10526   + caddc 10528  cmin 10858  0cn0 11885  ..^cfzo 13021  chash 13678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pr 5320
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-iota 6307  df-fun 6350  df-fv 6356  df-ov 7148
This theorem is referenced by:  wlkiswwlks2lem4  27577
  Copyright terms: Public domain W3C validator