MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkiswwlks2lem4 Structured version   Visualization version   GIF version

Theorem wlkiswwlks2lem4 26661
Description: Lemma 4 for wlkiswwlks2 26664. (Contributed by Alexander van der Vekens, 20-Jul-2018.) (Revised by AV, 10-Apr-2021.)
Hypotheses
Ref Expression
wlkiswwlks2lem.f 𝐹 = (𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))
wlkiswwlks2lem.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
wlkiswwlks2lem4 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) → (∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → ∀𝑖 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
Distinct variable groups:   𝑥,𝑃   𝑥,𝐸   𝑥,𝑉   𝑖,𝐹   𝑖,𝐺   𝑃,𝑖   𝑖,𝑉,𝑥
Allowed substitution hints:   𝐸(𝑖)   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem wlkiswwlks2lem4
StepHypRef Expression
1 wlkiswwlks2lem.f . . . 4 𝐹 = (𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))
21wlkiswwlks2lem1 26658 . . 3 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) → (#‘𝐹) = ((#‘𝑃) − 1))
323adant1 1077 . 2 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) → (#‘𝐹) = ((#‘𝑃) − 1))
4 lencl 13279 . . . . . . . . . 10 (𝑃 ∈ Word 𝑉 → (#‘𝑃) ∈ ℕ0)
543ad2ant2 1081 . . . . . . . . 9 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) → (#‘𝑃) ∈ ℕ0)
61wlkiswwlks2lem2 26659 . . . . . . . . 9 (((#‘𝑃) ∈ ℕ0𝑖 ∈ (0..^((#‘𝑃) − 1))) → (𝐹𝑖) = (𝐸‘{(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
75, 6sylan 488 . . . . . . . 8 (((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) ∧ 𝑖 ∈ (0..^((#‘𝑃) − 1))) → (𝐹𝑖) = (𝐸‘{(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
87adantr 481 . . . . . . 7 ((((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) ∧ 𝑖 ∈ (0..^((#‘𝑃) − 1))) ∧ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸) → (𝐹𝑖) = (𝐸‘{(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
98fveq2d 6162 . . . . . 6 ((((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) ∧ 𝑖 ∈ (0..^((#‘𝑃) − 1))) ∧ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸) → (𝐸‘(𝐹𝑖)) = (𝐸‘(𝐸‘{(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
10 wlkiswwlks2lem.e . . . . . . . . . . 11 𝐸 = (iEdg‘𝐺)
1110uspgrf1oedg 25995 . . . . . . . . . 10 (𝐺 ∈ USPGraph → 𝐸:dom 𝐸1-1-onto→(Edg‘𝐺))
12 edgval 25875 . . . . . . . . . . . 12 (𝐺 ∈ USPGraph → (Edg‘𝐺) = ran (iEdg‘𝐺))
1310rneqi 5322 . . . . . . . . . . . 12 ran 𝐸 = ran (iEdg‘𝐺)
1412, 13syl6reqr 2674 . . . . . . . . . . 11 (𝐺 ∈ USPGraph → ran 𝐸 = (Edg‘𝐺))
1514f1oeq3d 6101 . . . . . . . . . 10 (𝐺 ∈ USPGraph → (𝐸:dom 𝐸1-1-onto→ran 𝐸𝐸:dom 𝐸1-1-onto→(Edg‘𝐺)))
1611, 15mpbird 247 . . . . . . . . 9 (𝐺 ∈ USPGraph → 𝐸:dom 𝐸1-1-onto→ran 𝐸)
17163ad2ant1 1080 . . . . . . . 8 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) → 𝐸:dom 𝐸1-1-onto→ran 𝐸)
1817adantr 481 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) ∧ 𝑖 ∈ (0..^((#‘𝑃) − 1))) → 𝐸:dom 𝐸1-1-onto→ran 𝐸)
19 f1ocnvfv2 6498 . . . . . . 7 ((𝐸:dom 𝐸1-1-onto→ran 𝐸 ∧ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸) → (𝐸‘(𝐸‘{(𝑃𝑖), (𝑃‘(𝑖 + 1))})) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})
2018, 19sylan 488 . . . . . 6 ((((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) ∧ 𝑖 ∈ (0..^((#‘𝑃) − 1))) ∧ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸) → (𝐸‘(𝐸‘{(𝑃𝑖), (𝑃‘(𝑖 + 1))})) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})
219, 20eqtrd 2655 . . . . 5 ((((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) ∧ 𝑖 ∈ (0..^((#‘𝑃) − 1))) ∧ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸) → (𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})
2221ex 450 . . . 4 (((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) ∧ 𝑖 ∈ (0..^((#‘𝑃) − 1))) → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → (𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
2322ralimdva 2958 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) → (∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → ∀𝑖 ∈ (0..^((#‘𝑃) − 1))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
24 oveq2 6623 . . . . 5 ((#‘𝐹) = ((#‘𝑃) − 1) → (0..^(#‘𝐹)) = (0..^((#‘𝑃) − 1)))
2524raleqdv 3137 . . . 4 ((#‘𝐹) = ((#‘𝑃) − 1) → (∀𝑖 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ ∀𝑖 ∈ (0..^((#‘𝑃) − 1))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
2625imbi2d 330 . . 3 ((#‘𝐹) = ((#‘𝑃) − 1) → ((∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → ∀𝑖 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ↔ (∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → ∀𝑖 ∈ (0..^((#‘𝑃) − 1))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
2723, 26syl5ibr 236 . 2 ((#‘𝐹) = ((#‘𝑃) − 1) → ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) → (∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → ∀𝑖 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
283, 27mpcom 38 1 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) → (∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → ∀𝑖 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2908  {cpr 4157   class class class wbr 4623  cmpt 4683  ccnv 5083  dom cdm 5084  ran crn 5085  1-1-ontowf1o 5856  cfv 5857  (class class class)co 6615  0cc0 9896  1c1 9897   + caddc 9899  cle 10035  cmin 10226  0cn0 11252  ..^cfzo 12422  #chash 13073  Word cword 13246  iEdgciedg 25809  Edgcedg 25873   USPGraph cuspgr 25970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-oadd 7524  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-card 8725  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-n0 11253  df-z 11338  df-uz 11648  df-fz 12285  df-fzo 12423  df-hash 13074  df-word 13254  df-edg 25874  df-uspgr 25972
This theorem is referenced by:  wlkiswwlks2lem6  26663
  Copyright terms: Public domain W3C validator