MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkl1loop Structured version   Visualization version   GIF version

Theorem wlkl1loop 27422
Description: A walk of length 1 from a vertex to itself is a loop. (Contributed by AV, 23-Apr-2021.)
Assertion
Ref Expression
wlkl1loop (((Fun (iEdg‘𝐺) ∧ 𝐹(Walks‘𝐺)𝑃) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → {(𝑃‘0)} ∈ (Edg‘𝐺))

Proof of Theorem wlkl1loop
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 wlkv 27397 . . . . 5 (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
2 simp3l 1197 . . . . . . . . 9 ((𝐺 ∈ V ∧ 𝐹(Walks‘𝐺)𝑃 ∧ (Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)))) → Fun (iEdg‘𝐺))
3 simp2 1133 . . . . . . . . 9 ((𝐺 ∈ V ∧ 𝐹(Walks‘𝐺)𝑃 ∧ (Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)))) → 𝐹(Walks‘𝐺)𝑃)
4 c0ex 10638 . . . . . . . . . . . . 13 0 ∈ V
54snid 4604 . . . . . . . . . . . 12 0 ∈ {0}
6 oveq2 7167 . . . . . . . . . . . . 13 ((♯‘𝐹) = 1 → (0..^(♯‘𝐹)) = (0..^1))
7 fzo01 13122 . . . . . . . . . . . . 13 (0..^1) = {0}
86, 7syl6eq 2875 . . . . . . . . . . . 12 ((♯‘𝐹) = 1 → (0..^(♯‘𝐹)) = {0})
95, 8eleqtrrid 2923 . . . . . . . . . . 11 ((♯‘𝐹) = 1 → 0 ∈ (0..^(♯‘𝐹)))
109ad2antrl 726 . . . . . . . . . 10 ((Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → 0 ∈ (0..^(♯‘𝐹)))
11103ad2ant3 1131 . . . . . . . . 9 ((𝐺 ∈ V ∧ 𝐹(Walks‘𝐺)𝑃 ∧ (Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)))) → 0 ∈ (0..^(♯‘𝐹)))
12 eqid 2824 . . . . . . . . . 10 (iEdg‘𝐺) = (iEdg‘𝐺)
1312iedginwlk 27421 . . . . . . . . 9 ((Fun (iEdg‘𝐺) ∧ 𝐹(Walks‘𝐺)𝑃 ∧ 0 ∈ (0..^(♯‘𝐹))) → ((iEdg‘𝐺)‘(𝐹‘0)) ∈ ran (iEdg‘𝐺))
142, 3, 11, 13syl3anc 1367 . . . . . . . 8 ((𝐺 ∈ V ∧ 𝐹(Walks‘𝐺)𝑃 ∧ (Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)))) → ((iEdg‘𝐺)‘(𝐹‘0)) ∈ ran (iEdg‘𝐺))
15 eqid 2824 . . . . . . . . . . 11 (Vtx‘𝐺) = (Vtx‘𝐺)
1615, 12iswlkg 27398 . . . . . . . . . 10 (𝐺 ∈ V → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))))
178raleqdv 3418 . . . . . . . . . . . . . . 15 ((♯‘𝐹) = 1 → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ ∀𝑘 ∈ {0}if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
18 oveq1 7166 . . . . . . . . . . . . . . . . . 18 (𝑘 = 0 → (𝑘 + 1) = (0 + 1))
19 0p1e1 11762 . . . . . . . . . . . . . . . . . 18 (0 + 1) = 1
2018, 19syl6eq 2875 . . . . . . . . . . . . . . . . 17 (𝑘 = 0 → (𝑘 + 1) = 1)
21 wkslem2 27393 . . . . . . . . . . . . . . . . 17 ((𝑘 = 0 ∧ (𝑘 + 1) = 1) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0)))))
2220, 21mpdan 685 . . . . . . . . . . . . . . . 16 (𝑘 = 0 → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0)))))
234, 22ralsn 4622 . . . . . . . . . . . . . . 15 (∀𝑘 ∈ {0}if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0))))
2417, 23syl6bb 289 . . . . . . . . . . . . . 14 ((♯‘𝐹) = 1 → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0)))))
2524ad2antrl 726 . . . . . . . . . . . . 13 ((Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0)))))
26 ifptru 1068 . . . . . . . . . . . . . . . . 17 ((𝑃‘0) = (𝑃‘1) → (if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0))) ↔ ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}))
2726biimpa 479 . . . . . . . . . . . . . . . 16 (((𝑃‘0) = (𝑃‘1) ∧ if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0)))) → ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)})
2827eqcomd 2830 . . . . . . . . . . . . . . 15 (((𝑃‘0) = (𝑃‘1) ∧ if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0)))) → {(𝑃‘0)} = ((iEdg‘𝐺)‘(𝐹‘0)))
2928ex 415 . . . . . . . . . . . . . 14 ((𝑃‘0) = (𝑃‘1) → (if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0))) → {(𝑃‘0)} = ((iEdg‘𝐺)‘(𝐹‘0))))
3029ad2antll 727 . . . . . . . . . . . . 13 ((Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → (if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0))) → {(𝑃‘0)} = ((iEdg‘𝐺)‘(𝐹‘0))))
3125, 30sylbid 242 . . . . . . . . . . . 12 ((Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → {(𝑃‘0)} = ((iEdg‘𝐺)‘(𝐹‘0))))
3231com12 32 . . . . . . . . . . 11 (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ((Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → {(𝑃‘0)} = ((iEdg‘𝐺)‘(𝐹‘0))))
33323ad2ant3 1131 . . . . . . . . . 10 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → {(𝑃‘0)} = ((iEdg‘𝐺)‘(𝐹‘0))))
3416, 33syl6bi 255 . . . . . . . . 9 (𝐺 ∈ V → (𝐹(Walks‘𝐺)𝑃 → ((Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → {(𝑃‘0)} = ((iEdg‘𝐺)‘(𝐹‘0)))))
35343imp 1107 . . . . . . . 8 ((𝐺 ∈ V ∧ 𝐹(Walks‘𝐺)𝑃 ∧ (Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)))) → {(𝑃‘0)} = ((iEdg‘𝐺)‘(𝐹‘0)))
36 edgval 26837 . . . . . . . . 9 (Edg‘𝐺) = ran (iEdg‘𝐺)
3736a1i 11 . . . . . . . 8 ((𝐺 ∈ V ∧ 𝐹(Walks‘𝐺)𝑃 ∧ (Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)))) → (Edg‘𝐺) = ran (iEdg‘𝐺))
3814, 35, 373eltr4d 2931 . . . . . . 7 ((𝐺 ∈ V ∧ 𝐹(Walks‘𝐺)𝑃 ∧ (Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)))) → {(𝑃‘0)} ∈ (Edg‘𝐺))
39383exp 1115 . . . . . 6 (𝐺 ∈ V → (𝐹(Walks‘𝐺)𝑃 → ((Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → {(𝑃‘0)} ∈ (Edg‘𝐺))))
40393ad2ant1 1129 . . . . 5 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(Walks‘𝐺)𝑃 → ((Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → {(𝑃‘0)} ∈ (Edg‘𝐺))))
411, 40mpcom 38 . . . 4 (𝐹(Walks‘𝐺)𝑃 → ((Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → {(𝑃‘0)} ∈ (Edg‘𝐺)))
4241expd 418 . . 3 (𝐹(Walks‘𝐺)𝑃 → (Fun (iEdg‘𝐺) → (((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)) → {(𝑃‘0)} ∈ (Edg‘𝐺))))
4342impcom 410 . 2 ((Fun (iEdg‘𝐺) ∧ 𝐹(Walks‘𝐺)𝑃) → (((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)) → {(𝑃‘0)} ∈ (Edg‘𝐺)))
4443imp 409 1 (((Fun (iEdg‘𝐺) ∧ 𝐹(Walks‘𝐺)𝑃) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → {(𝑃‘0)} ∈ (Edg‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  if-wif 1057  w3a 1083   = wceq 1536  wcel 2113  wral 3141  Vcvv 3497  wss 3939  {csn 4570  {cpr 4572   class class class wbr 5069  dom cdm 5558  ran crn 5559  Fun wfun 6352  wf 6354  cfv 6358  (class class class)co 7159  0cc0 10540  1c1 10541   + caddc 10543  ...cfz 12895  ..^cfzo 13036  chash 13693  Word cword 13864  Vtxcvtx 26784  iEdgciedg 26785  Edgcedg 26835  Walkscwlks 27381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1058  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-er 8292  df-map 8411  df-pm 8412  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865  df-edg 26836  df-wlks 27384
This theorem is referenced by:  clwlkl1loop  27567  loop1cycl  32388
  Copyright terms: Public domain W3C validator