MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlklnwwlkln2lem Structured version   Visualization version   GIF version

Theorem wlklnwwlkln2lem 26671
Description: Lemma for wlklnwwlkln2 26672 and wlklnwwlklnupgr2 26674. Formerly part of proof for wlklnwwlkln2 26672. (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 12-Apr-2021.)
Hypothesis
Ref Expression
wlklnwwlkln2lem.1 (𝜑 → (𝑃 ∈ (WWalks‘𝐺) → ∃𝑓 𝑓(Walks‘𝐺)𝑃))
Assertion
Ref Expression
wlklnwwlkln2lem (𝜑 → (𝑃 ∈ (𝑁 WWalksN 𝐺) → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (#‘𝑓) = 𝑁)))
Distinct variable groups:   𝑓,𝐺   𝑓,𝑁   𝑃,𝑓   𝜑,𝑓

Proof of Theorem wlklnwwlkln2lem
StepHypRef Expression
1 eqid 2621 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
21wwlknbp 26636 . . 3 (𝑃 ∈ (𝑁 WWalksN 𝐺) → (𝐺 ∈ V ∧ 𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)))
3 iswwlksn 26633 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑃 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑃 ∈ (WWalks‘𝐺) ∧ (#‘𝑃) = (𝑁 + 1))))
43adantr 481 . . . . 5 ((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) → (𝑃 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑃 ∈ (WWalks‘𝐺) ∧ (#‘𝑃) = (𝑁 + 1))))
5 lencl 13279 . . . . . . . . . . . . . 14 (𝑃 ∈ Word (Vtx‘𝐺) → (#‘𝑃) ∈ ℕ0)
65nn0cnd 11313 . . . . . . . . . . . . 13 (𝑃 ∈ Word (Vtx‘𝐺) → (#‘𝑃) ∈ ℂ)
76adantl 482 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) → (#‘𝑃) ∈ ℂ)
8 1cnd 10016 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) → 1 ∈ ℂ)
9 nn0cn 11262 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
109adantr 481 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) → 𝑁 ∈ ℂ)
117, 8, 10subadd2d 10371 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) → (((#‘𝑃) − 1) = 𝑁 ↔ (𝑁 + 1) = (#‘𝑃)))
12 eqcom 2628 . . . . . . . . . . 11 ((𝑁 + 1) = (#‘𝑃) ↔ (#‘𝑃) = (𝑁 + 1))
1311, 12syl6rbb 277 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) → ((#‘𝑃) = (𝑁 + 1) ↔ ((#‘𝑃) − 1) = 𝑁))
1413biimpcd 239 . . . . . . . . 9 ((#‘𝑃) = (𝑁 + 1) → ((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) → ((#‘𝑃) − 1) = 𝑁))
1514adantl 482 . . . . . . . 8 ((𝑃 ∈ (WWalks‘𝐺) ∧ (#‘𝑃) = (𝑁 + 1)) → ((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) → ((#‘𝑃) − 1) = 𝑁))
1615impcom 446 . . . . . . 7 (((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ∈ (WWalks‘𝐺) ∧ (#‘𝑃) = (𝑁 + 1))) → ((#‘𝑃) − 1) = 𝑁)
17 wlklnwwlkln2lem.1 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 ∈ (WWalks‘𝐺) → ∃𝑓 𝑓(Walks‘𝐺)𝑃))
1817com12 32 . . . . . . . . . . . . 13 (𝑃 ∈ (WWalks‘𝐺) → (𝜑 → ∃𝑓 𝑓(Walks‘𝐺)𝑃))
1918adantr 481 . . . . . . . . . . . 12 ((𝑃 ∈ (WWalks‘𝐺) ∧ (#‘𝑃) = (𝑁 + 1)) → (𝜑 → ∃𝑓 𝑓(Walks‘𝐺)𝑃))
2019adantl 482 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ∈ (WWalks‘𝐺) ∧ (#‘𝑃) = (𝑁 + 1))) → (𝜑 → ∃𝑓 𝑓(Walks‘𝐺)𝑃))
2120imp 445 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ∈ (WWalks‘𝐺) ∧ (#‘𝑃) = (𝑁 + 1))) ∧ 𝜑) → ∃𝑓 𝑓(Walks‘𝐺)𝑃)
22 simpr 477 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ∈ (WWalks‘𝐺) ∧ (#‘𝑃) = (𝑁 + 1))) ∧ 𝜑) ∧ 𝑓(Walks‘𝐺)𝑃) → 𝑓(Walks‘𝐺)𝑃)
23 wlklenvm1 26421 . . . . . . . . . . . . 13 (𝑓(Walks‘𝐺)𝑃 → (#‘𝑓) = ((#‘𝑃) − 1))
2422, 23jccir 561 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ∈ (WWalks‘𝐺) ∧ (#‘𝑃) = (𝑁 + 1))) ∧ 𝜑) ∧ 𝑓(Walks‘𝐺)𝑃) → (𝑓(Walks‘𝐺)𝑃 ∧ (#‘𝑓) = ((#‘𝑃) − 1)))
2524ex 450 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ∈ (WWalks‘𝐺) ∧ (#‘𝑃) = (𝑁 + 1))) ∧ 𝜑) → (𝑓(Walks‘𝐺)𝑃 → (𝑓(Walks‘𝐺)𝑃 ∧ (#‘𝑓) = ((#‘𝑃) − 1))))
2625eximdv 1843 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ∈ (WWalks‘𝐺) ∧ (#‘𝑃) = (𝑁 + 1))) ∧ 𝜑) → (∃𝑓 𝑓(Walks‘𝐺)𝑃 → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (#‘𝑓) = ((#‘𝑃) − 1))))
2721, 26mpd 15 . . . . . . . . 9 ((((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ∈ (WWalks‘𝐺) ∧ (#‘𝑃) = (𝑁 + 1))) ∧ 𝜑) → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (#‘𝑓) = ((#‘𝑃) − 1)))
28 eqeq2 2632 . . . . . . . . . . 11 (((#‘𝑃) − 1) = 𝑁 → ((#‘𝑓) = ((#‘𝑃) − 1) ↔ (#‘𝑓) = 𝑁))
2928anbi2d 739 . . . . . . . . . 10 (((#‘𝑃) − 1) = 𝑁 → ((𝑓(Walks‘𝐺)𝑃 ∧ (#‘𝑓) = ((#‘𝑃) − 1)) ↔ (𝑓(Walks‘𝐺)𝑃 ∧ (#‘𝑓) = 𝑁)))
3029exbidv 1847 . . . . . . . . 9 (((#‘𝑃) − 1) = 𝑁 → (∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (#‘𝑓) = ((#‘𝑃) − 1)) ↔ ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (#‘𝑓) = 𝑁)))
3127, 30syl5ib 234 . . . . . . . 8 (((#‘𝑃) − 1) = 𝑁 → ((((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ∈ (WWalks‘𝐺) ∧ (#‘𝑃) = (𝑁 + 1))) ∧ 𝜑) → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (#‘𝑓) = 𝑁)))
3231expd 452 . . . . . . 7 (((#‘𝑃) − 1) = 𝑁 → (((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ∈ (WWalks‘𝐺) ∧ (#‘𝑃) = (𝑁 + 1))) → (𝜑 → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (#‘𝑓) = 𝑁))))
3316, 32mpcom 38 . . . . . 6 (((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ∈ (WWalks‘𝐺) ∧ (#‘𝑃) = (𝑁 + 1))) → (𝜑 → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (#‘𝑓) = 𝑁)))
3433ex 450 . . . . 5 ((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) → ((𝑃 ∈ (WWalks‘𝐺) ∧ (#‘𝑃) = (𝑁 + 1)) → (𝜑 → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (#‘𝑓) = 𝑁))))
354, 34sylbid 230 . . . 4 ((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) → (𝑃 ∈ (𝑁 WWalksN 𝐺) → (𝜑 → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (#‘𝑓) = 𝑁))))
36353adant1 1077 . . 3 ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) → (𝑃 ∈ (𝑁 WWalksN 𝐺) → (𝜑 → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (#‘𝑓) = 𝑁))))
372, 36mpcom 38 . 2 (𝑃 ∈ (𝑁 WWalksN 𝐺) → (𝜑 → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (#‘𝑓) = 𝑁)))
3837com12 32 1 (𝜑 → (𝑃 ∈ (𝑁 WWalksN 𝐺) → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (#‘𝑓) = 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wex 1701  wcel 1987  Vcvv 3190   class class class wbr 4623  cfv 5857  (class class class)co 6615  cc 9894  1c1 9897   + caddc 9899  cmin 10226  0cn0 11252  #chash 13073  Word cword 13246  Vtxcvtx 25808  Walkscwlks 26396  WWalkscwwlks 26620   WWalksN cwwlksn 26621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1012  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-oadd 7524  df-er 7702  df-map 7819  df-pm 7820  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-card 8725  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-n0 11253  df-z 11338  df-uz 11648  df-fz 12285  df-fzo 12423  df-hash 13074  df-word 13254  df-wlks 26399  df-wwlks 26625  df-wwlksn 26626
This theorem is referenced by:  wlklnwwlkln2  26672  wlklnwwlklnupgr2  26674
  Copyright terms: Public domain W3C validator