Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkonprop Structured version   Visualization version   GIF version

Theorem wlkonprop 26610
 Description: Properties of a walk between two vertices. (Contributed by Alexander van der Vekens, 12-Dec-2017.) (Revised by AV, 31-Dec-2020.) (Proof shortened by AV, 16-Jan-2021.)
Hypothesis
Ref Expression
wlkson.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
wlkonprop (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)))

Proof of Theorem wlkonprop
Dummy variables 𝑎 𝑏 𝑓 𝑔 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wlkson.v . . . . . 6 𝑉 = (Vtx‘𝐺)
2 fvex 6239 . . . . . 6 (Vtx‘𝐺) ∈ V
31, 2eqeltri 2726 . . . . 5 𝑉 ∈ V
4 df-wlkson 26552 . . . . . 6 WalksOn = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏)}))
5 3simpc 1080 . . . . . . 7 ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) → (𝐴𝑉𝐵𝑉))
61wlkson 26608 . . . . . . 7 ((𝐴𝑉𝐵𝑉) → (𝐴(WalksOn‘𝐺)𝐵) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵)})
75, 6syl 17 . . . . . 6 ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) → (𝐴(WalksOn‘𝐺)𝐵) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵)})
8 fveq2 6229 . . . . . . 7 (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺))
98, 1syl6eqr 2703 . . . . . 6 (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉)
10 fveq2 6229 . . . . . . . 8 (𝑔 = 𝐺 → (Walks‘𝑔) = (Walks‘𝐺))
1110breqd 4696 . . . . . . 7 (𝑔 = 𝐺 → (𝑓(Walks‘𝑔)𝑝𝑓(Walks‘𝐺)𝑝))
12113anbi1d 1443 . . . . . 6 (𝑔 = 𝐺 → ((𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏) ↔ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏)))
134, 7, 9, 9, 12bropfvvvv 7302 . . . . 5 ((𝑉 ∈ V ∧ 𝑉 ∈ V) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → (𝐺 ∈ V ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))))
143, 3, 13mp2an 708 . . . 4 (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → (𝐺 ∈ V ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
15 3anass 1059 . . . . . 6 ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ↔ (𝐺 ∈ V ∧ (𝐴𝑉𝐵𝑉)))
1615anbi1i 731 . . . . 5 (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ↔ ((𝐺 ∈ V ∧ (𝐴𝑉𝐵𝑉)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
17 df-3an 1056 . . . . 5 ((𝐺 ∈ V ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ↔ ((𝐺 ∈ V ∧ (𝐴𝑉𝐵𝑉)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
1816, 17bitr4i 267 . . . 4 (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ↔ (𝐺 ∈ V ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
1914, 18sylibr 224 . . 3 (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
205anim1i 591 . . . . . 6 (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → ((𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
211iswlkon 26609 . . . . . 6 (((𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)))
2220, 21syl 17 . . . . 5 (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)))
2322biimpd 219 . . . 4 (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)))
2423imdistani 726 . . 3 ((((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ 𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃) → (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)))
2519, 24mpancom 704 . 2 (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)))
26 df-3an 1056 . 2 (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) ↔ (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)))
2725, 26sylibr 224 1 (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030  Vcvv 3231   class class class wbr 4685  {copab 4745  ‘cfv 5926  (class class class)co 6690  0cc0 9974  #chash 13157  Vtxcvtx 25919  Walkscwlks 26548  WalksOncwlkson 26549 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ifp 1033  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-hash 13158  df-word 13331  df-wlks 26551  df-wlkson 26552 This theorem is referenced by:  wlkoniswlk  26613  wlksoneq1eq2  26616  wlkonl1iedg  26617  wlkon2n0  26618  spthonepeq  26704  uhgrwkspth  26707  usgr2wlkspth  26711
 Copyright terms: Public domain W3C validator